Publication:
Self-Optimizing Control System to Maximize Power Extraction and Minimize Loads on the Blades of a Wind Turbine

dc.contributor.authorRivas Vásquez, Carlos Eduardo
dc.contributor.authorMalo Méndez, Gilson Daniel
dc.contributor.authorMinchala Ávila, Luis Ismael
dc.date.accessioned2023-10-16T19:01:24Z
dc.date.available2023-10-16T19:01:24Z
dc.date.issued2023
dc.description.abstractThis research proposes a methodology for designing and testing a self-optimizing control (SOC) algorithm applied to a wind energy conversion system (WECS). The SOC maximizes WECS power output and reduces the mechanical stress of the wind turbine (WT) blades by optimizing a multiobjective cost function. The cost function computation uses a combined blade element momentum (BEM) and thin-wall beam (TWB) model for calculating wind the turbine power output and blades’ stress. The SOC deployment implies a low computational cost due to an optimization space reduction via a matrix projection applied to a measurement vector, based on a prior offline calculation of a projection matrix, (Formula presented.). Furthermore, the SOC optimizes the operation of the WECS in the presence of uncertainty associated with the wind speed variation by controlling a linear combination of measured variables to a set point. A MATLAB simulation of a wind turbine model allows us to compare the WECS operating with the SOC, a baseline classic control system (BCS), and a nonlinear model predictive controller (NMPC). The SOC algorithm is evaluated in terms of power output, blades’ stress, and computational cost against the BCS and NMPC. The power output and blades’ stress performance of the SOC algorithm are compared with that of the BCS and NMPC, showing a significant improvement in both cases. The simulation results demonstrate that the proposed SOC can effectively optimize a WECS operation in real time with minimal computational costs.
dc.identifier.doi10.3390/machines11060601
dc.identifier.issn2075-1702
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85163866415&origin=resultslist&sort=plf-f&src=s&sid=259f7bd4e5fd6be3b6a2cff7990329dd&sot=b&sdt=b&s=TITLE-ABS-KEY%28Self-Optimizing+Control+System+to+Maximize+Power+Extraction+and+Minimize+Loads+on+the+Blades+of+a+Wind+Turbine%29&sl=125&sessionSearchId=259f7bd4e5fd6be3b6a2cff7990329dd
dc.language.isoes_ES
dc.sourceMachines
dc.subjectBlade aerodynamics
dc.subjectMaximum power extraction
dc.subjectMeasurement selection or combination matrix
dc.subjectSOC
dc.subjectStress or fatigue reduction
dc.subjectWECS
dc.subjectWind turbine
dc.titleSelf-Optimizing Control System to Maximize Power Extraction and Minimize Loads on the Blades of a Wind Turbine
dc.typeARTÍCULO
dc.ucuenca.afiliacionRivas, C., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador
dc.ucuenca.afiliacionMalo, G., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador
dc.ucuenca.afiliacionMinchala, L., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.5 Telecomunicaciones
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0714 - Electrónica y Automatización
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.correspondenciaRivas Vasquez, Carlos Eduardo, eduardo.rivas@ucuenca.edu.ec
dc.ucuenca.cuartilQ3
dc.ucuenca.factorimpacto0.449
dc.ucuenca.idautor0105822787
dc.ucuenca.idautor0106721806
dc.ucuenca.idautor0301453486
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/journal/machines
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 11, número 6
dspace.entity.typePublication
relation.isAuthorOfPublicationa3e784e2-0457-4d35-911e-12908570f43c
relation.isAuthorOfPublication.latestForDiscoverya3e784e2-0457-4d35-911e-12908570f43c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
1.38 MB
Format:
Adobe Portable Document Format
Description:
document

Collections