Publication:
Artificial neural network performance evaluation for a hybrid power domain orthogonal/non-orthogonal multiple access (OMA/NOMA) system

dc.contributor.authorBelesaca Mendieta, Juan Diego
dc.contributor.authorÁvila Campos, Pablo Esteban
dc.contributor.authorVázquez Rodas, Andrés Marcelo
dc.date.accessioned2021-01-24T02:31:42Z
dc.date.available2021-01-24T02:31:42Z
dc.date.issued2020
dc.description.abstractNext-generation wireless technologies face considerable challenges in terms of providing the required latency and connectivity for new heterogeneous mobile networks. Driven by these problems, this study focuses on increasing user connectivity together with system throughput. For doing so, we propose and evaluate a hybrid machine learning-driven orthogonal/non-orthogonal multiple access (OMA/NOMA) system. In this work, we use an artificial neural network (ANN) to assign an OMA or NOMA access method to each user equipment (UE). As part of this research we also evaluate the accuracy and training time of the three most relevant learning algorithms of ANN (L-M, BFGS, and OSS). The main objective is to increase the sum-rate of the mobile network in the introduced beamforming and mmWave channel environment. Simulation results show up to a $20%$ sum-rate average performance increase of the system using the ANN management in contrast to a random non-ANN managed system. The Leveberg-Marquard (L-M) training algorithm is the best overall algorithm for this proposed application as presents the highest accuracy of around $77%$ despite 37 minutes of training and lower accuracy of $73%$ with approximately 28 seconds of training time.
dc.description.cityAlicante
dc.identifier.doi10.1145/3416011.3424760
dc.identifier.isbn978-145038118-5
dc.identifier.issn0000-0000
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097712150&doi=10.1145%2f3416011.3424760&partnerID=40&md5=8859a6aefb3692d0bc9f28fab371cfb0
dc.language.isoes_ES
dc.publisherAssociation for Computing Machinery, Inc
dc.sourcePE-WASUN 2020 - Proceedings of the 17th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks
dc.subjectAnalog beam
dc.subjectForming
dc.subjectArtificial neural networks ANN
dc.subjectBFGS
dc.subjectL-M
dc.subjectMM-wave channel
dc.subjectNOMA
dc.subjectOMA
dc.subjectOSS
dc.subjectSum-rate
dc.titleArtificial neural network performance evaluation for a hybrid power domain orthogonal/non-orthogonal multiple access (OMA/NOMA) system
dc.typeARTÍCULO DE CONFERENCIA
dc.ucuenca.afiliacionBelesaca, J., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.afiliacionAvila, P., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.afiliacionVazquez, A., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.5 Telecomunicaciones
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio06 - Información y Comunicación (TIC)
dc.ucuenca.areaconocimientounescodetallado0612 - Base de Datos, Diseno y Administración de Redes
dc.ucuenca.areaconocimientounescoespecifico061 - Información y Comunicación (TIC)
dc.ucuenca.comiteorganizadorconferenciaMónica Aguilar Igartua; Carolina Tripp Barba
dc.ucuenca.conferencia17th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, PE-WASUN 2020
dc.ucuenca.embargoend2050-12-30
dc.ucuenca.embargointerno2050-12-30
dc.ucuenca.fechafinconferencia2020-11-20
dc.ucuenca.fechainicioconferencia2020-11-16
dc.ucuenca.idautor0104817770
dc.ucuenca.idautor0105737118
dc.ucuenca.idautor0301496840
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.organizadorconferenciaLuis J. de la Cruz Llopis
dc.ucuenca.paisESPAÑA
dc.ucuenca.urifuentehttps://dl.acm.org/doi/proceedings/10.1145/3416011
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 0, número 0
dspace.entity.typePublication
relation.isAuthorOfPublication99bfa45e-dc11-4391-a0a2-7f49a8b3f51d
relation.isAuthorOfPublication.latestForDiscovery99bfa45e-dc11-4391-a0a2-7f49a8b3f51d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
13.9 MB
Format:
Adobe Portable Document Format
Description:
document

Collections