Publication:
Artificial neural networks applied to flow prediction: A use case for the Tomebamba river

dc.contributor.authorVeintimilla Reyes, Jaime Eduardo
dc.contributor.authorCisneros Espinoza, Felipe Eduardo
dc.contributor.authorVanegas Peralta, Pablo Fernando
dc.contributor.ponenteVeintimilla Reyes, Jaime Eduardo
dc.date.accessioned2018-01-11T16:47:48Z
dc.date.available2018-01-11T16:47:48Z
dc.date.issued2016
dc.descriptionThe main aim of this research is to create a model based on Artificial Neural Networks (ANN) that allows predicting the flow in Tomebamba river, at real time and in a specific day of a year. As inputs, this research is using information of rainfall and flow of the stations along of the river. This information is organized in scenarios and each scenario is prepared to a specific area. For this article, we have selected two scenarios. The information is acquired from the hydrological stations placed in the watershed using an electronic system developed at real time and it supports any kind or brands of this type of sensors. The prediction works very good three days in advance. This research includes two ANN models: Backpropagation and a hybrid model between back propagation and OWO-HWO (output weight optimization–hidden weight optimization) to select the initial weights of the connection. These last two models have been tested in a preliminary research. To validate the results we are using some error indicators such as MSE, RMSE, EF, CD and BIAS. The results of this research reached high levels of reliability and the level of error is minimal. These predictions are useful to avoid floods in the city of Cuenca in Ecuador.
dc.description.abstractThe main aim of this research is to create a model based on Artificial Neural Networks (ANN) that allows predicting the flow in Tomebamba river, at real time and in a specific day of a year. As inputs, this research is using information of rainfall and flow of the stations along of the river. This information is organized in scenarios and each scenario is prepared to a specific area. For this article, we have selected two scenarios. The information is acquired from the hydrological stations placed in the watershed using an electronic system developed at real time and it supports any kind or brands of this type of sensors. The prediction works very good three days in advance. This research includes two ANN models: Backpropagation and a hybrid model between back propagation and OWO-HWO (output weight optimization–hidden weight optimization) to select the initial weights of the connection. These last two models have been tested in a preliminary research. To validate the results we are using some error indicators such as MSE, RMSE, EF, CD and BIAS. The results of this research reached high levels of reliability and the level of error is minimal. These predictions are useful to avoid floods in the city of Cuenca in Ecuador.
dc.description.cityChania, Creta
dc.identifier.doi10.1016/j.proeng.2016.11.031
dc.identifier.isbn000-000-000-0
dc.identifier.issn1877-7058
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1877705816333367?via%3Dihub
dc.language.isoes_ES
dc.publisherElsevier Ltd
dc.sourceProcedia Engineering 162
dc.subjectArtificial Neural Networks
dc.subjectAnn
dc.subjectForecasting
dc.subjectHydrology
dc.subjectFloods
dc.titleArtificial neural networks applied to flow prediction: A use case for the Tomebamba river
dc.typeARTÍCULO DE CONFERENCIA
dc.ucuenca.afiliacionVeintimilla, J., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador; Veintimilla, J., KU Leuven, Leuven, Belgica
dc.ucuenca.afiliacionCisneros, F., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador
dc.ucuenca.afiliacionVanegas, P., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.11.2 Otras Ingenierias y Tecnologías
dc.ucuenca.areaconocimientofrascatiespecifico2.11 Otras Ingenierias y Tecnologías
dc.ucuenca.areaconocimientounescoamplio06 - Información y Comunicación (TIC)
dc.ucuenca.areaconocimientounescodetallado0613 - Software y Desarrollo y Análisis de Aplicativos
dc.ucuenca.areaconocimientounescoespecifico061 - Información y Comunicación (TIC)
dc.ucuenca.comiteorganizadorconferenciaVasilis Kanakoudis, George Karatzas, Evangelos Keramaris, Theodoros Karakasidis, Stavroula Tsitsifli, Zoi Dokou, Nektarios Kourgialas, Anastasios Zouboulis, Petros Samaras, George Tsakiris
dc.ucuenca.conferenciaInternational Conference on Efficien Sustainable Water Systems Management toward Worth Living Development, 2nd EWaS 2016
dc.ucuenca.correspondenciaVeintimilla Reyes, Jaime Eduardo, jaime.veintimilla@ucuenca.edu.ec
dc.ucuenca.fechafinconferencia2016-06-04
dc.ucuenca.fechainicioconferencia2016-06-01
dc.ucuenca.idautor0103458394
dc.ucuenca.idautor0101045540
dc.ucuenca.idautor0102274891
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.organizadorconferenciaUniversity of Thessaly and the Technical University of Crete.
dc.ucuenca.paisGRECIA
dc.ucuenca.urifuentehttps://www.sciencedirect.com/journal/procedia-engineering
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenvolumen 162
dspace.entity.typePublication
relation.isAuthorOfPublicationd94bf140-d22a-49aa-8164-d055fe5f0523
relation.isAuthorOfPublicationfc1936f3-d2fb-467a-af14-e49f8304f399
relation.isAuthorOfPublication.latestForDiscoveryd94bf140-d22a-49aa-8164-d055fe5f0523

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
2.11 MB
Format:
Adobe Portable Document Format
Description:
document

Collections