Publication:
Evaluating the mindwave headset for automatic upper body motion classification

dc.contributor.authorPalacio Baus, Kenneth Samuel
dc.contributor.authorMinchala Ávila, Luis Ismael
dc.contributor.authorVázquez Rodas, Andrés Marcelo
dc.contributor.authorAstudillo Salinas, Darwin Fabián
dc.contributor.ponenteAstudillo Salinas, Darwin Fabián
dc.date.accessioned2019-02-06T19:56:30Z
dc.date.available2019-02-06T19:56:30Z
dc.date.issued2018
dc.descriptionThis paper presents preliminary results on evaluating the NeuroSky Mindwave headset for upper body motion intention classification. An artificial neural network (ANN) is trained by using a data set built for two different feature extraction methods, one based on the wavelet transform (WT) and another based on the use of spectrograms. Since there are five different types of brain waves,(α, β, γ, Δ, θ) some data aggregation procedures are proposed to reduce the dimensionality of the data set. The classification results show that it is possible to attain a 73.1% of assertion rate. © 2017 IEEE.
dc.description.abstractThis paper presents preliminary results on evaluating the NeuroSky Mindwave headset for upper body motion intention classification. An artificial neural network (ANN) is trained by using a data set built for two different feature extraction methods, one based on the wavelet transform (WT) and another based on the use of spectrograms. Since there are five different types of brain waves,(α, β, γ, Δ, θ) some data aggregation procedures are proposed to reduce the dimensionality of the data set. The classification results show that it is possible to attain a 73.1% of assertion rate. © 2017 IEEE.
dc.description.cityQuito
dc.identifier.doi10.1109/INCISCOS.2017.10
dc.identifier.isbn9781538626443
dc.identifier.issn0000-0000
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/31938
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85050904685&doi=10.1109%2fINCISCOS.2017.10&partnerID=40&md5=4849098634c9d1c16bfd999e67769627
dc.language.isoes_ES
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.sourceProceedings - 2017 International Conference on Information Systems and Computer Science, INCISCOS 2017
dc.subjectAnn
dc.subjectClassificator
dc.subjectData Compression
dc.subjectMindwave
dc.titleEvaluating the mindwave headset for automatic upper body motion classification
dc.typeARTÍCULO DE CONFERENCIA
dc.ucuenca.afiliacionPalacio, K., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.afiliacionMinchala, L., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.afiliacionVazquez, A., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.afiliacionAstudillo, D., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio3. Ciencias Médicas y de la Salud
dc.ucuenca.areaconocimientofrascatidetallado3.1.4 Neurociencias
dc.ucuenca.areaconocimientofrascatiespecifico3.1 Medicina Básica
dc.ucuenca.areaconocimientounescoamplio09 - Salud y Bienestar
dc.ucuenca.areaconocimientounescodetallado0912 - Medicina
dc.ucuenca.areaconocimientounescoespecifico091 - Salud
dc.ucuenca.comiteorganizadorconferenciaOswaldo Moscoso, Universidad Tecnológica Equinoccial, Ecuador Luis Terán, University of Fribourg (UniFR), Switzerland
dc.ucuenca.conferencia2nd International Conference on Information Systems and Computer Science, INCISCOS 2017
dc.ucuenca.embargoend2050-12-31
dc.ucuenca.embargointerno2050-12-31
dc.ucuenca.fechafinconferencia2017-11-25
dc.ucuenca.fechainicioconferencia2017-11-23
dc.ucuenca.idautor0103566360
dc.ucuenca.idautor0301453486
dc.ucuenca.idautor0301496840
dc.ucuenca.idautor0103907036
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.organizadorconferenciaSergio Luján, University of Alicante, Spain
dc.ucuenca.paisECUADOR
dc.ucuenca.urifuentehttps://ieeexplore.ieee.org/document/8328102
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenvolumen 2017-November
dspace.entity.typePublication
relation.isAuthorOfPublication2541297e-ad0c-4d25-8354-4d5bce749f5c
relation.isAuthorOfPublicationa3e784e2-0457-4d35-911e-12908570f43c
relation.isAuthorOfPublication0ace217e-689c-4f2a-bbbf-0b5171b24110
relation.isAuthorOfPublication.latestForDiscovery2541297e-ad0c-4d25-8354-4d5bce749f5c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
573.33 KB
Format:
Adobe Portable Document Format
Description:
document

Collections