Publication:
Nonparametric user activity modelling and prediction

dc.contributor.authorNowé, Ann
dc.contributor.authorDe Bock, Yannick
dc.contributor.authorDuflou, Joost R
dc.contributor.authorAuquilla Sangolquí, Andrés Vinicio
dc.date.accessioned2020-06-13T00:43:28Z
dc.date.available2020-06-13T00:43:28Z
dc.date.issued2020
dc.descriptionModelling the occupancy of buildings, rooms or the usage of machines has many applications in varying fields, exemplified by the fairly recent emergence of smart, self-learning thermostats. Typically, the aim of such systems is to provide insight into user behaviour and incentivise energy savings or to automatically reduce consumption while maintaining user comfort. This paper presents a nonparametric user activity modelling algorithm, i.e. a Dirichlet process mixture model implemented by Gibbs sampling and the stick-breaking process, to infer the underlying patterns in user behaviour from the data. The technique deals with multiple activities, such as <present, absent, sleeping>, of multiple users. Furthermore, it can also be used for modelling and predicting appliance usage (e.g. <on, standby, off>). The algorithm is evaluated, both on cluster validity and predictive performance, using three case studies of varying complexity. The obtained results indicate that the method is able to properly assign the activity data into well-defined clusters. Moreover, the high prediction accuracy demonstrates that these clusters can be exploited to anticipate future behaviour, facilitating the development of intelligent building management systems. © 2020, Springer Nature B.V.
dc.description.abstractModelling the occupancy of buildings, rooms or the usage of machines has many applications in varying fields, exemplified by the fairly recent emergence of smart, self-learning thermostats. Typically, the aim of such systems is to provide insight into user behaviour and incentivise energy savings or to automatically reduce consumption while maintaining user comfort. This paper presents a nonparametric user activity modelling algorithm, i.e. a Dirichlet process mixture model implemented by Gibbs sampling and the stick-breaking process, to infer the underlying patterns in user behaviour from the data. The technique deals with multiple activities, such as <present, absent, sleeping>, of multiple users. Furthermore, it can also be used for modelling and predicting appliance usage (e.g. <on, standby, off>). The algorithm is evaluated, both on cluster validity and predictive performance, using three case studies of varying complexity. The obtained results indicate that the method is able to properly assign the activity data into well-defined clusters. Moreover, the high prediction accuracy demonstrates that these clusters can be exploited to anticipate future behaviour, facilitating the development of intelligent building management systems. © 2020, Springer Nature B.V.
dc.identifier.doi10.1007/s11257-020-09259-3
dc.identifier.issn09241868
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/34497
dc.identifier.urihttps://link.springer.com/article/10.1007%2Fs11257-020-09259-3
dc.language.isoes_ES
dc.sourceUser Modeling and User-Adapted Interaction
dc.subjectClustering
dc.subjectDirichlet process mixture
dc.subjectOccupancy prediction
dc.subjectActivity recognition
dc.titleNonparametric user activity modelling and prediction
dc.typeARTÍCULO
dc.ucuenca.afiliacionAuquilla, A., KU Leuven, Leuven, Belgica; Auquilla, A., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador
dc.ucuenca.afiliacionDuflou, J., KU Leuven, Leuven, Belgica
dc.ucuenca.afiliacionNowé, A., Vrije Universiteit Brussel, Elsene, Belgica
dc.ucuenca.afiliacionDe Bock, Y., KU Leuven, Leuven, Belgica
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.1.3 Ingeniería en Construcción
dc.ucuenca.areaconocimientofrascatiespecifico2.1 Ingeniería Civil
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0732 - Construcción e Ingeniería Civil
dc.ucuenca.areaconocimientounescoespecifico073 - Arquitectura y Construcción
dc.ucuenca.correspondenciaDe Bock, Yannick, yannick.debock@kuleuven.be
dc.ucuenca.cuartilQ1
dc.ucuenca.embargoend2050-06-12
dc.ucuenca.embargointerno2050-06-12
dc.ucuenca.factorimpacto1.57
dc.ucuenca.idautorSgrp-3164-1
dc.ucuenca.idautor0103557369
dc.ucuenca.idautorSgrp-3164-3
dc.ucuenca.idautorSgrp-3164-4
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones7955
dc.ucuenca.urifuentehttps://www.springer.com/journal/11257
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 0
dspace.entity.typePublication
relation.isAuthorOfPublicationa46c326f-f014-4ede-b508-808551f216df
relation.isAuthorOfPublication.latestForDiscoverya46c326f-f014-4ede-b508-808551f216df

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
103.87 KB
Format:
Adobe Portable Document Format
Description:
document

Collections