Publication:
A general process for the semantic annotation and enrichment of electronic program guides

dc.contributor.authorGonzalez Toral, Hernan Santiago
dc.contributor.authorEspinoza Mejía, Jorge Mauricio
dc.contributor.authorPalacio Baus, Kenneth Samuel
dc.contributor.authorSaquicela Galarza, Víctor Hugo
dc.date.accessioned2020-05-16T00:14:51Z
dc.date.available2020-05-16T00:14:51Z
dc.date.issued2019
dc.descriptionElectronic Program Guides (EPGs) are usual resources aimed to inform the audience about the programming being transmitted by TV stations and cable/satellite TV providers. However, they only provide basic metadata about the TV programs, while users may want to obtain additional information related to the content they are currently watching. This paper proposes a general process for the semantic annotation and subsequent enrichment of EPGs using external knowledge bases and natural language processing techniques with the aim to tackle the lack of immediate availability of related information about TV programs. Additionally, we define an evaluation approach based on a distributed representation of words that can enable TV content providers to verify the effectiveness of the system and perform an automatic execution of the enrichment process. We test our proposal using a real-world dataset and demonstrate its effectiveness by using different knowledge bases, word representation models and similarity measures. Results showed that DBpedia and Google Knowledge Graph knowledge bases return the most relevant content during the enrichment process, while word2vec and fasttext models with Words Mover’s Distance as similarity function can be combined to validate the effectiveness of the retrieval task.
dc.description.abstractElectronic Program Guides (EPGs) are usual resources aimed to inform the audience about the programming being transmitted by TV stations and cable/satellite TV providers. However, they only provide basic metadata about the TV programs, while users may want to obtain additional information related to the content they are currently watching. This paper proposes a general process for the semantic annotation and subsequent enrichment of EPGs using external knowledge bases and natural language processing techniques with the aim to tackle the lack of immediate availability of related information about TV programs. Additionally, we define an evaluation approach based on a distributed representation of words that can enable TV content providers to verify the effectiveness of the system and perform an automatic execution of the enrichment process. We test our proposal using a real-world dataset and demonstrate its effectiveness by using different knowledge bases, word representation models and similarity measures. Results showed that DBpedia and Google Knowledge Graph knowledge bases return the most relevant content during the enrichment process, while word2vec and fasttext models with Words Mover’s Distance as similarity function can be combined to validate the effectiveness of the retrieval task.
dc.description.cityCayo Santa María
dc.identifier.doi10.1007/978-3-030-21395-4_6
dc.identifier.isbn978-303021394-7
dc.identifier.issn18650929
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066117874&origin=inward
dc.language.isoes_ES
dc.publisherSpringer Verlag
dc.sourceCommunications in Computer and Information Science
dc.subjectElectronic programming guides
dc.subjectNatural language processing
dc.subjectSemantic enrichment
dc.subjectWord embeddings
dc.titleA general process for the semantic annotation and enrichment of electronic program guides
dc.typeARTÍCULO DE CONFERENCIA
dc.ucuenca.afiliacionGonzalez, H., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador
dc.ucuenca.afiliacionEspinoza, J., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador
dc.ucuenca.afiliacionPalacio, K., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador
dc.ucuenca.afiliacionSaquicela, V., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.1 Ingeniería Eléctrica y Electrónica
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0714 - Electrónica y Automatización
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.comiteorganizadorconferenciaBoris Villazón-Terrazas,Yusniel Hidalgo-Delgado, Amed Leiva Mederos,Pedro Szekely,José Emilio Labra Gayo,Victor Saquicela,Mauricio Espinosa,Ghislain Atemezing,Lucía Sarni
dc.ucuenca.conferencia1st Iberoamerican Knowledge Graphs and Semantic Web Conference, KGSWC 2019
dc.ucuenca.correspondenciaGonzalez Toral, Hernan Santiago, hernan.gonzalezt@ucuenca.edu.ec
dc.ucuenca.cuartilQ3
dc.ucuenca.embargoend2050-05-15
dc.ucuenca.embargointerno2050-05-15
dc.ucuenca.factorimpacto0.17
dc.ucuenca.fechafinconferencia2019-06-30
dc.ucuenca.fechainicioconferencia2019-06-23
dc.ucuenca.idautor0301861340
dc.ucuenca.idautor0102778818
dc.ucuenca.idautor0103566360
dc.ucuenca.idautor0103599577
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones4423
dc.ucuenca.organizadorconferenciaIberoamerican KGSWC
dc.ucuenca.paisCUBA
dc.ucuenca.urifuentehttps://www.springer.com/series/7899
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 0
dspace.entity.typePublication
relation.isAuthorOfPublication7f498bd8-8097-48e6-9d44-32c96e3abd23
relation.isAuthorOfPublication2541297e-ad0c-4d25-8354-4d5bce749f5c
relation.isAuthorOfPublication48f3b0ef-dc7f-4a21-9cca-597c4a692117
relation.isAuthorOfPublication.latestForDiscovery7f498bd8-8097-48e6-9d44-32c96e3abd23

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
81.44 KB
Format:
Adobe Portable Document Format
Description:
document

Collections