Publication:
Anova and cluster distance based contributions for feature empirical analysis to fault diagnosis in rotating machinery

dc.contributor.authorPeña Ortega, Mario Patricio
dc.contributor.authorÁlvarez Palomeque, Lourdes Ximena
dc.contributor.authorJadán Avilés, Diana Carolina
dc.contributor.authorLucero, Pablo
dc.contributor.authorBarragán Landy, Milton Francisco
dc.contributor.authorGuamán Guachichullca, Noé Rodrigo
dc.contributor.authorCerrada Lozada, Mariela
dc.contributor.ponentePeña Ortega, Mario Patricio
dc.date.accessioned2020-02-08T15:14:06Z
dc.date.available2020-02-08T15:14:06Z
dc.date.issued2017
dc.descriptionThe number of extracted features for fault diagnosis in rotating machinery can grow considerably due to the large amount of available data collected from different monitored signals. Usually, feature selection or reduction are conducted through several techniques proposing a unique set of representative features for all available classes; nevertheless, in feature selection, it has been recognized that a set of individually good features do not necessarily lead to good classification. This paper proposes a general framework to analyse the feature selection oriented to identify the features that can produce clusters of data with a proper structure. In the first stage, the framework uses Analysis of Variance (ANOVA) combined with Tukey's test for ranking the significant features individually. In the second stage, a further analysis based on inter-cluster and intra-cluster distances, is accomplished to rank subsets of significant features previously identified. In this sense, our contribution aims at discovering the subset of features that are discriminating better the clusters of data associated to several faulty conditions of the mechanical devices, to build more robust fault multi-classifiers. Fault severity classification in rolling bearings is studied to test the proposed framework, with data collected from an experimental test bed under real conditions of speed and load on the rotating device. © 2017 IEEE.
dc.description.abstractThe number of extracted features for fault diagnosis in rotating machinery can grow considerably due to the large amount of available data collected from different monitored signals. Usually, feature selection or reduction are conducted through several techniques proposing a unique set of representative features for all available classes; nevertheless, in feature selection, it has been recognized that a set of individually good features do not necessarily lead to good classification. This paper proposes a general framework to analyse the feature selection oriented to identify the features that can produce clusters of data with a proper structure. In the first stage, the framework uses Analysis of Variance (ANOVA) combined with Tukey's test for ranking the significant features individually. In the second stage, a further analysis based on inter-cluster and intra-cluster distances, is accomplished to rank subsets of significant features previously identified. In this sense, our contribution aims at discovering the subset of features that are discriminating better the clusters of data associated to several faulty conditions of the mechanical devices, to build more robust fault multi-classifiers. Fault severity classification in rolling bearings is studied to test the proposed framework, with data collected from an experimental test bed under real conditions of speed and load on the rotating device. © 2017 IEEE.
dc.description.cityShanghai
dc.identifier.doi10.1109/SDPC.2017.23
dc.identifier.isbn978-150904020-9
dc.identifier.issn0000-0000
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/33973
dc.identifier.urihttps://ieeexplore.ieee.org/document/8181552
dc.language.isoes_ES
dc.publisherInstitute of Electrical and Electronics Engineers
dc.source2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)
dc.subjectAnova
dc.subjectBearings
dc.subjectCluster validity assessment
dc.subjectFault diagnosis
dc.subjectFeature engineering
dc.titleAnova and cluster distance based contributions for feature empirical analysis to fault diagnosis in rotating machinery
dc.title.alternativeAnova and cluster distance based contributions for feature empirical analysis to fault diagnosis in rotating machinery
dc.typeARTÍCULO DE CONFERENCIA
dc.ucuenca.afiliacionPeña, M., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador
dc.ucuenca.afiliacionAlvarez, L., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador
dc.ucuenca.afiliacionJadan, D., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador
dc.ucuenca.afiliacionLucero, P., Universidad Politecnica Salesiana, Cuenca, Ecuador
dc.ucuenca.afiliacionBarragan, M., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador
dc.ucuenca.afiliacionGuaman, N., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador
dc.ucuenca.afiliacionCerrada, M., Universidad Politecnica Salesiana, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.11.2 Otras Ingenierias y Tecnologías
dc.ucuenca.areaconocimientofrascatiespecifico2.11 Otras Ingenierias y Tecnologías
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0714 - Electrónica y Automatización
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.comiteorganizadorconferenciaShanghai Aircraft Customer Service Corporation, Chongqing Technology and Business University, Carleton University, IEEE Reliability Society and International Society of Measurement, Management, and Maintenance
dc.ucuenca.conferencia2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)
dc.ucuenca.embargoend2050-12-30
dc.ucuenca.embargointerno2050-12-30
dc.ucuenca.fechafinconferencia2017-08-18
dc.ucuenca.fechainicioconferencia2017-08-16
dc.ucuenca.idautor0302168141
dc.ucuenca.idautor0103184362
dc.ucuenca.idautor0104236971
dc.ucuenca.idautorSgrp-881-4
dc.ucuenca.idautor0201858719
dc.ucuenca.idautor0105291595
dc.ucuenca.idautor7102543304
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.organizadorconferenciaInstitute of Electrical and Electronics Engineers
dc.ucuenca.paisCHINA
dc.ucuenca.urifuentehttps://ieeexplore.ieee.org/xpl/conhome/8170482/proceeding
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenvolumen 2017
dspace.entity.typePublication
relation.isAuthorOfPublication365dd174-69d4-457a-80f4-0e34fe0b76e6
relation.isAuthorOfPublication1f50aa5c-8ff6-41aa-9483-db05b676aac6
relation.isAuthorOfPublication64414089-b938-45ab-a8b9-37d9a093013f
relation.isAuthorOfPublication.latestForDiscovery365dd174-69d4-457a-80f4-0e34fe0b76e6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
313.92 KB
Format:
Adobe Portable Document Format
Description:
document

Collections