Publication:
Wavelet analyses of neural networks based river discharge decomposition

dc.contributor.authorPalacio Baus, Kenneth Samuel
dc.contributor.authorCrespo Sánchez, Patricio Javier
dc.contributor.authorCélleri Alvear, Rolando Enrique
dc.contributor.authorMosquera Rojas, Giovanny Mauricio
dc.contributor.authorMendoza Sigüenza, Daniel Emilio
dc.contributor.authorCampozano Parra, Lenin Vladimir
dc.date.accessioned2020-06-12T14:17:00Z
dc.date.available2020-06-12T14:17:00Z
dc.date.issued2020
dc.descriptionThe problem of discharge forecasting using precipitation as input is still very active in Hydrology, and has a plethora of approaches to its solution. But, when the objective is to simulate discharge values without considering the phenomenology behind the processes involved, Artificial Neural Networks, ANN give good results. However, the question of how the black box internally solve this problem remains open. In this research, the classical rainfall‐runoff problem is approached considering that the total discharge is a sum of components of the hydrological system, which from the ANN perspective is translated to the sum of three signals related to the fast, middle and slow flow. Thus, the present study has two aims (a) to study the time‐frequency representation of discharge by an ANN hydrologic model and (b) to study the capabilities of ANN to additively decompose total river discharge. This study adds knowledge to the open problem of the physical interpretability of black‐box models, which remains very limited. The results show that total discharge is adequately simulated in the time frequency domain, although less power spectrum is evident during the rainy seasons in the ANN model, due to fast flow underestimation. The wavelet spectrum of discharge represents well the slow, middle and fast flow components of the system with transit times of 256, 12–64 and 2–12 days, respectively. Interestingly, these transit times are remarkably similar to those of the soil water reservoirs of the studied system, a small headwater catchment in the tropical Andes. This result needs further research because it opens the possibility of determining MMT on a fraction of the cost of isotopic based methods. The cross‐power spectrum indicates that the error in the simulated discharge is more related to the misrepresentation of the fast and the middle flow components, despite limitations in the recharge period of the slow flow component. With respect to the representation of individual signals of the slow, middle and fast flows components, the three neurons were uncapable to individually represent such flows. However, the combination of pairs of these signals resemble the dynamics and the spectral content of the aforementioned flows signals. These results show some evidence that signal processing techniques may be used to infer information about the hydrological functioning of a basin.
dc.description.abstractThe problem of discharge forecasting using precipitation as input is still very active in Hydrology, and has a plethora of approaches to its solution. But, when the objective is to simulate discharge values without considering the phenomenology behind the processes involved, Artificial Neural Networks, ANN give good results. However, the question of how the black box internally solve this problem remains open. In this research, the classical rainfall‐runoff problem is approached considering that the total discharge is a sum of components of the hydrological system, which from the ANN perspective is translated to the sum of three signals related to the fast, middle and slow flow. Thus, the present study has two aims (a) to study the time‐frequency representation of discharge by an ANN hydrologic model and (b) to study the capabilities of ANN to additively decompose total river discharge. This study adds knowledge to the open problem of the physical interpretability of black‐box models, which remains very limited. The results show that total discharge is adequately simulated in the time frequency domain, although less power spectrum is evident during the rainy seasons in the ANN model, due to fast flow underestimation. The wavelet spectrum of discharge represents well the slow, middle and fast flow components of the system with transit times of 256, 12–64 and 2–12 days, respectively. Interestingly, these transit times are remarkably similar to those of the soil water reservoirs of the studied system, a small headwater catchment in the tropical Andes. This result needs further research because it opens the possibility of determining MMT on a fraction of the cost of isotopic based methods. The cross‐power spectrum indicates that the error in the simulated discharge is more related to the misrepresentation of the fast and the middle flow components, despite limitations in the recharge period of the slow flow component. With respect to the representation of individual signals of the slow, middle and fast flows components, the three neurons were uncapable to individually represent such flows. However, the combination of pairs of these signals resemble the dynamics and the spectral content of the aforementioned flows signals. These results show some evidence that signal processing techniques may be used to infer information about the hydrological functioning of a basin.
dc.identifier.doi10.1002/hyp.13726
dc.identifier.issn0885-6087
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/34487
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1002/hyp.13726
dc.language.isoes_ES
dc.sourceHydrological Processes
dc.subjectMiddle flow
dc.subjectSlow flow
dc.subjectFast flow
dc.subjectMountain hydrology
dc.subjectANN
dc.subjectCross wavelet transform
dc.subjectDischarge decomposition
dc.titleWavelet analyses of neural networks based river discharge decomposition
dc.typeARTÍCULO
dc.ucuenca.afiliacionMendoza, D., Escuela Politécnica Nacional (Quito), Quito, Ecuador; Mendoza, D., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionCampozano, L., Escuela Politécnica Nacional (Quito), Quito, Ecuador; Campozano, L., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionCrespo, P., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador; Crespo, P., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.afiliacionCelleri, R., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador; Celleri, R., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.afiliacionPalacio, K., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionMosquera, G., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador; Mosquera, G., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio1. Ciencias Naturales y Exactas
dc.ucuenca.areaconocimientofrascatidetallado1.5.10 Recursos Hídricos
dc.ucuenca.areaconocimientofrascatiespecifico1.5 Ciencias de la Tierra y el Ambiente
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.correspondenciaCampozano Parra, Lenin Vladimir, lenin.campozano@epn.edu.ec
dc.ucuenca.cuartilQ1
dc.ucuenca.embargoend2050-06-12
dc.ucuenca.embargointerno2050-06-12
dc.ucuenca.factorimpacto1.429
dc.ucuenca.idautor0102677200
dc.ucuenca.idautor0102572773
dc.ucuenca.idautor0103901070
dc.ucuenca.idautor0104450911
dc.ucuenca.idautor0103566360
dc.ucuenca.idautor0602794406
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://onlinelibrary.wiley.com/toc/10991085/2020/34/11
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 34, número 11
dspace.entity.typePublication
relation.isAuthorOfPublication2541297e-ad0c-4d25-8354-4d5bce749f5c
relation.isAuthorOfPublicationb79c918f-74bb-48e6-802a-765548ad2f89
relation.isAuthorOfPublication3bc97ee0-63fd-4b9c-85eb-5f399fa3b5ac
relation.isAuthorOfPublication.latestForDiscovery2541297e-ad0c-4d25-8354-4d5bce749f5c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
486.57 KB
Format:
Adobe Portable Document Format
Description:
document

Collections