Publication:
Literature Review of Data Mining Applications in Academic Libraries

dc.contributor.authorSigüenza Guzmán, Lorena Catalina
dc.contributor.authorÁvila Ordóñez, Elina María
dc.contributor.authorSaquicela Galarza, Víctor Hugo
dc.date.accessioned2018-01-11T16:47:19Z
dc.date.available2018-01-11T16:47:19Z
dc.date.issued2015-07-01
dc.description.abstractThis article provides a comprehensive literature review and classification method for data mining techniques applied to academic libraries. To achieve this, forty-one practical contributions over the period 1998-2014 were identified and reviewed for their direct relevance. Each article was categorized according to the main data mining functions: clustering, association, classification, and regression; and their application in the four main library aspects: services, quality, collection, and usage behavior. Findings indicate that both collection and usage behavior analyses have received most of the research attention, especially related to collection development and usability of websites and online services respectively. Furthermore, classification and regression models are the two most commonly used data mining functions applied in library settings.Additionally, results indicate that the top 6 journals of articles published on the application of data mining techniques in academic libraries are: College and Research Libraries, Journal of Academic Librarianship, Information Processing and Management, Library Hi Tech, International Journal of Knowledge, Culture and Change Management, and The Electronic Library. Scopus is the multidisciplinary database that provides the best coverage of journal articles identified. To our knowledge, this study represents the first systematic, identifiable and comprehensive academic literature review of data mining techniques applied to academic libraries.
dc.identifier.doi10.1016/j.acalib.2015.06.007
dc.identifier.issn991333
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84937163361&doi=10.1016%2fj.acalib.2015.06.007&partnerID=40&md5=b66bc2ab11f619e14adfdbef9ed91fcb
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/29072
dc.language.isoen_US
dc.publisherELSEVIER LTD
dc.sourceJournal of Academic Librarianship
dc.subjectAcademic Libraries
dc.subjectBibliomining
dc.subjectData Mining
dc.subjectLiterature Review
dc.titleLiterature Review of Data Mining Applications in Academic Libraries
dc.typeArticle
dc.ucuenca.afiliacionsiguenza-guzman, l., department of computer science, university of cuenca, 12 de abril av., cuenca, ecuador, centre for industrial management traffic and infrastructure, ku leuven, celestijnenlaan 300, box 2422, leuven, belgium
dc.ucuenca.afiliacionavila-ordóñez, e., department of computer science, university of cuenca, 12 de abril av., cuenca, ecuador, centre for industrial management traffic and infrastructure, ku leuven, celestijnenlaan 300, box 2422, leuven, belgium
dc.ucuenca.afiliacionsaquicela, v., department of computer science, university of cuenca, 12 de abril av., cuenca, ecuador
dc.ucuenca.correspondenciaSiguenza-Guzman, L.Celestijnenlaan 300, Box 2422, Office: 04.44, Belgium
dc.ucuenca.cuartilQ1
dc.ucuenca.embargoend2022-01-01 0:00
dc.ucuenca.factorimpacto1.41
dc.ucuenca.idautor0102659687
dc.ucuenca.idautor0917624868
dc.ucuenca.idautor0103599577
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones9
dc.ucuenca.volumen41
dspace.entity.typePublication
relation.isAuthorOfPublicationf0d76cbd-0c21-4af0-8cfc-ef9ebd22ba4a
relation.isAuthorOfPublication2877efff-8b85-4206-921f-b3b3707973aa
relation.isAuthorOfPublication48f3b0ef-dc7f-4a21-9cca-597c4a692117
relation.isAuthorOfPublication.latestForDiscovery48f3b0ef-dc7f-4a21-9cca-597c4a692117

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
168.92 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
19.94 KB
Format:
Plain Text
Description:

Collections