Publication:
Large-scale integration of renewable energies by 2050 through demand prediction with ANFIS, Ecuador case study

dc.contributor.authorArévalo Cordero, Wilian Paul
dc.date.accessioned2024-03-06T16:03:58Z
dc.date.available2024-03-06T16:03:58Z
dc.date.issued2024
dc.description.abstractThe growing reliance on hydroelectric power and the risk of future droughts pose significant challenges for power systems, especially in developing countries. To address these challenges, comprehensive long-term energy planning is essential. This paper proposes an optimized electrical system for 2050, using Ecuador as a case study. For forecasting electricity demand, a Neuro-Fuzzy Adaptive Inference System is employed, utilizing real historical data. Subsequently, the EnergyPlan software constructs a long-term energy consumption model, exploring three scenarios based on Ecuador’s energy potential. The first scenario represents a ’business as usual’ approach, mirroring the current trend in the Ecuadorian electricity system. In contrast to the second scenario, it encompasses a broader range of renewable sources, including offshore wind, pumped storage, biomass, and geothermal energy. The third scenario extends the second one by incorporating demand response systems, such as vehicle-to- grid and hydrogen-to-grid technologies. In terms of novelty, this study highlights the innovative use of the Neuro- Fuzzy Adaptive Inference System for demand forecasting, along with a comprehensive exploration of multiple scenarios to optimize the electrical system. Research findings indicate that the integration of these new renewable energy sources not only reduces electricity import costs but also ensures surplus electricity production. Consequently, it is anticipated that the 2050 electricity system will reduce its dependence on hydroelectric energy while adopting photovoltaic and wind energy with penetration rates of 65 %, 11.2 %, and 9 %, respectively. This transition will be facilitated by a pumped storage system with a 28 % penetration rate and enhanced connectivity with neighboring countries, enabling the seamless integration of electric and hydrogen vehicles.
dc.identifier.doi10.1016/j.energy.2023.129446
dc.identifier.issn0360-5442
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/44111
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85177203453&doi=10.1016%2fj.energy.2023.129446&partnerID=40&md5=feeb154f49eed9c47aa4535a082fad7d
dc.language.isoes_ES
dc.sourceEnergy
dc.subjectRenewable energies
dc.subjectHydroelectric
dc.subjectElectric system
dc.subjectPhotovoltaic energy
dc.titleLarge-scale integration of renewable energies by 2050 through demand prediction with ANFIS, Ecuador case study
dc.typeARTÍCULO
dc.ucuenca.afiliacionArevalo, W., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador; Arevalo, W., Universidad de Jaen, Jaen, España
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.1 Ingeniería Eléctrica y Electrónica
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0713 - Electricidad y Energia
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto1.989
dc.ucuenca.idautor0302495726
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.sciencedirect.com/journal/energy/vol/286/suppl/C
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 286
dspace.entity.typePublication
relation.isAuthorOfPublication0c47719f-c911-453e-9a84-71f018adcb52
relation.isAuthorOfPublication.latestForDiscovery0c47719f-c911-453e-9a84-71f018adcb52

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
5.59 MB
Format:
Adobe Portable Document Format
Description:
document

Collections