Publication:
A novel electronic chip detection method using deep neural networks

dc.contributor.authorZhang, Huiyan
dc.contributor.authorSun, Hao
dc.contributor.authorPeng, Shi
dc.contributor.authorMinchala Ávila, Luis Ismael
dc.date.accessioned2022-07-28T17:06:59Z
dc.date.available2022-07-28T17:06:59Z
dc.date.issued2022
dc.description.abstractElectronic chip detection is widely used in electronic industries. However, most existing detection methods cannot handle chip images with multiple classes of chips or complex backgrounds, which are common in real applications. To address these problems, a novel chip detection method that combines attentional feature fusion (AFF) and cosine nonlocal attention (CNLA), is proposed, and it consists of three parts: a feature extraction module, a region proposal module, and a detection module. The feature extraction module combines an AFF-embedded CNLA module and a pyramid feature module to extract features from chip images. The detection module enhances feature maps with a region intermediate feature map by spatial attentional block, fuses multiple feature maps with a multiscale region of the fusion block of interest, and classifies and regresses objects in images with two branches of fully connected layers. Experimental results on a medium-scale dataset comprising 367 images show that our proposed method achieved mAP0.5 = 0.98745 and outperformed the benchmark method.
dc.identifier.doi10.3390/machines10050361
dc.identifier.issn2075-1702
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85130417833&origin=resultslist&sort=plf-f&src=s&st1=A+Novel+Electronic+Chip+Detection+Method+Using+Deep+Neural+Networks&sid=75e8a3cc403221b2aebf55e280f48487&sot=b&sdt=b&sl=82&s=TITLE-ABS-KEY%28A+Novel+Electronic+Chip+Detection+Method+Using+Deep+Neural+Networks%29&relpos=0&citeCnt=0&searchTerm=&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1,FEATURE_EXPORT_REDESIGN:0
dc.language.isoes_ES
dc.sourceMachines
dc.subjectComputer science (miscellaneous)
dc.subjectControl and optimization
dc.subjectControl and systems engineering
dc.subjectElectrical and electronic engineering
dc.subjectIndustrial and manufacturing engineering
dc.subjectMechanical engineering
dc.titleA novel electronic chip detection method using deep neural networks
dc.typeARTÍCULO
dc.ucuenca.afiliacionZhang, H., Chongqing Technology and Business University, Chongqing, China
dc.ucuenca.afiliacionSun, H., Harbin Institute of Technology, Shenzhen, China
dc.ucuenca.afiliacionPeng, S., University of Adelaide, Adelaide, Australia
dc.ucuenca.afiliacionMinchala, L., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador; Minchala, L., Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.4 Ingeniería de La Comunicación y de Sistemas
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio06 - Información y Comunicación (TIC)
dc.ucuenca.areaconocimientounescodetallado0612 - Base de Datos, Diseno y Administración de Redes
dc.ucuenca.areaconocimientounescoespecifico061 - Información y Comunicación (TIC)
dc.ucuenca.cuartilQ2
dc.ucuenca.factorimpacto0.523
dc.ucuenca.idautor0000-0003-3406-8954
dc.ucuenca.idautorSgrp-5550-02
dc.ucuenca.idautor0000-0001-8218-586X
dc.ucuenca.idautor0301453486
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.mdpi.com/2075-1702/10/5
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 10, número 5
dspace.entity.typePublication
relation.isAuthorOfPublicationa3e784e2-0457-4d35-911e-12908570f43c
relation.isAuthorOfPublication.latestForDiscoverya3e784e2-0457-4d35-911e-12908570f43c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
4.44 MB
Format:
Adobe Portable Document Format
Description:
document

Collections