Publication: Adaptive neural security control for networked singular systems under deception attacks
| dc.contributor.author | Ao, Wengang | |
| dc.contributor.author | Minchala Ávila, Luis Ismael | |
| dc.contributor.author | Zhao, Ning | |
| dc.contributor.author | Zhang, Huiyan | |
| dc.date.accessioned | 2022-07-14T13:12:19Z | |
| dc.date.available | 2022-07-14T13:12:19Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | This paper studies the issue of the adaptive neural security controller design for uncertain networked singular systems in the presence of deception attacks. Considering that the attack signal is unknown, the neural networks technique is exploited to approximate the attack signal, which eliminates the assumption that the attack signal has a known upper bound. By combining the state feedback with the estimated information of the attack, the impact of the attack is effectively compensated. Furthermore, a novel Lyapunov function, including the decomposed state vector and the weight matrix estimation error, is established to evaluate the bounded area of the system state. Finally, a numerical example substantiates the validity of the theoretical results | |
| dc.identifier.doi | 10.1109/ACCESS.2022.3161672 | |
| dc.identifier.issn | 2169-3536 | |
| dc.identifier.uri | http://dspace.ucuenca.edu.ec/handle/123456789/39378 | |
| dc.identifier.uri | https://www.scopus.com/record/display.uri?eid=2-s2.0-85127057804&origin=resultslist&sort=plf-f&src=s&st1=Adaptive+Neural+Security+Control+for+Networked+Singular+Systems+Under+Deception+Attacks&sid=6d9204ff5d71a7bd759a1db50ac75434&sot=b&sdt=b&sl=102&s=TITLE-ABS-KEY%28Adaptive+Neural+Security+Control+for+Networked+Singular+Systems+Under+Deception+Attacks%29&relpos=0&citeCnt=0&searchTerm=&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1 | |
| dc.language.iso | es_ES | |
| dc.source | IEEE Access | |
| dc.subject | networked singular systems | |
| dc.subject | Deception attacks | |
| dc.subject | security control | |
| dc.subject | neural networks | |
| dc.title | Adaptive neural security control for networked singular systems under deception attacks | |
| dc.type | ARTÍCULO | |
| dc.ucuenca.afiliacion | Zhao, N., Universidad de Cuenca, Instituto Universitario de Lenguas, Cuenca, Ecuador; Zhao, N., Harbin Engineering University, Harbin, China | |
| dc.ucuenca.afiliacion | Minchala, L., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Ao, W., Chongqing Technology and Business University, Chongqing, China | |
| dc.ucuenca.afiliacion | Zhang, H., Chongqing Technology and Business University, Chongqing, China | |
| dc.ucuenca.areaconocimientofrascatiamplio | 2. Ingeniería y Tecnología | |
| dc.ucuenca.areaconocimientofrascatidetallado | 2.2.1 Ingeniería Eléctrica y Electrónica | |
| dc.ucuenca.areaconocimientofrascatiespecifico | 2.2 Ingenierias Eléctrica, Electrónica e Información | |
| dc.ucuenca.areaconocimientounescoamplio | 07 - Ingeniería, Industria y Construcción | |
| dc.ucuenca.areaconocimientounescodetallado | 0714 - Electrónica y Automatización | |
| dc.ucuenca.areaconocimientounescoespecifico | 071 - Ingeniería y Profesiones Afines | |
| dc.ucuenca.correspondencia | Zhang, Huiyan, huiyanzhang@ctbu.edu.cn | |
| dc.ucuenca.cuartil | Q1 | |
| dc.ucuenca.factorimpacto | 0.927 | |
| dc.ucuenca.idautor | 0000-0003-3406-8954 | |
| dc.ucuenca.idautor | Sgrp-5404-003 | |
| dc.ucuenca.idautor | Sgrp-5404-001 | |
| dc.ucuenca.idautor | 0301453486 | |
| dc.ucuenca.indicebibliografico | SCOPUS | |
| dc.ucuenca.numerocitaciones | 0 | |
| dc.ucuenca.urifuente | https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 | |
| dc.ucuenca.version | Versión publicada | |
| dc.ucuenca.volumen | Vol. 10 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | a3e784e2-0457-4d35-911e-12908570f43c | |
| relation.isAuthorOfPublication.latestForDiscovery | a3e784e2-0457-4d35-911e-12908570f43c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- documento.pdf
- Size:
- 4.03 MB
- Format:
- Adobe Portable Document Format
- Description:
- document
