Publication: Customer Segmentation in Food Retail Sector: An Approach from Customer Behavior and Product Association Rules
| dc.contributor.author | Llivisaca Villazhañay, Juan Carlos | |
| dc.contributor.author | Aviles Gonzalez, Jonnatan Fernando | |
| dc.contributor.ponente | Llivisaca Villazhañay, Juan Carlos | |
| dc.date.accessioned | 2023-02-28T16:41:13Z | |
| dc.date.available | 2023-02-28T16:41:13Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | In competitive markets, customer segmentation improves customer loyalty and business performance, but in practice, these analyses are carried out using simple relationships in dashboard, or Microsoft Excel’ sheets, which do not show customer behavior. Data segmentation in the era of big data has changed this paradigm with some techniques that try to decrease bias. In this research, four segmentation techniques are tested with a large set of data from a retail store. CLARA (Clustering Large Applications Algorithm) and Random Forest algorithms both were the best. Through the RFM (Recency, Frequency, Monetary) approach, eight customer segments were found, where Champions customers spend more money and return frequently to the retail store. In addition, each segment of customer buys following a model, this was demonstrated with the a priori algorithm. Finally, some strategies are given into which products should go together and how to distribute them so that customers can find them, as well as the best-selling products. | |
| dc.description.city | Quito | |
| dc.identifier.doi | 10.1007/978-3-031-24985-3_18 | |
| dc.identifier.isbn | 978-3-031-24985-3 | |
| dc.identifier.issn | 1865-0937 | |
| dc.identifier.uri | http://dspace.ucuenca.edu.ec/handle/123456789/41154 | |
| dc.identifier.uri | https://link.springer.com/chapter/10.1007/978-3-031-24985-3_18 | |
| dc.language.iso | es_ES | |
| dc.publisher | Springer | |
| dc.source | Applied Technologies. ICAT 2022. Communications in Computer and Information Science | |
| dc.subject | Retail | |
| dc.subject | A priori | |
| dc.subject | Data mining | |
| dc.subject | Random forest | |
| dc.subject | Clustering algorithm | |
| dc.title | Customer Segmentation in Food Retail Sector: An Approach from Customer Behavior and Product Association Rules | |
| dc.type | ARTÍCULO DE CONFERENCIA | |
| dc.ucuenca.afiliacion | Aviles, J., Universidad del Azuay, Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Llivisaca, J., Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador; Llivisaca, J., Universidad Politécnica Estatal del Carchi (UPEC), Carchi, Ecuador | |
| dc.ucuenca.areaconocimientofrascatiamplio | 2. Ingeniería y Tecnología | |
| dc.ucuenca.areaconocimientofrascatidetallado | 2.11.2 Otras Ingenierias y Tecnologías | |
| dc.ucuenca.areaconocimientofrascatiespecifico | 2.11 Otras Ingenierias y Tecnologías | |
| dc.ucuenca.areaconocimientounescoamplio | 07 - Ingeniería, Industria y Construcción | |
| dc.ucuenca.areaconocimientounescodetallado | 0711 - Ingeniería y Procesos Químicos | |
| dc.ucuenca.areaconocimientounescoespecifico | 071 - Ingeniería y Profesiones Afines | |
| dc.ucuenca.comiteorganizadorconferencia | Universidad de las Fuerzas Armadas “ESPE” | |
| dc.ucuenca.conferencia | 4th International Conference, ICAT 2022 | |
| dc.ucuenca.correspondencia | Llivisaca Villazhañay, Juan Carlos, juan.llivisaca@ucuenca.edu.ec | |
| dc.ucuenca.cuartil | Q4 | |
| dc.ucuenca.embargoend | 2050-12-31 | |
| dc.ucuenca.embargointerno | 2050-12-31 | |
| dc.ucuenca.factorimpacto | 0.21 | |
| dc.ucuenca.fechafinconferencia | 2022-11-25 | |
| dc.ucuenca.fechainicioconferencia | 2022-11-23 | |
| dc.ucuenca.idautor | 0105627269 | |
| dc.ucuenca.idautor | 0104803630 | |
| dc.ucuenca.indicebibliografico | SCOPUS | |
| dc.ucuenca.numerocitaciones | 0 | |
| dc.ucuenca.organizadorconferencia | Universidad de las Fuerzas Armadas “ESPE” | |
| dc.ucuenca.pais | ECUADOR | |
| dc.ucuenca.urifuente | https://www.springer.com/series/7899 | |
| dc.ucuenca.version | Versión publicada | |
| dc.ucuenca.volumen | Volumen 1755 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | a223d3c0-9c7f-4ef0-854c-fdb7692c79e7 | |
| relation.isAuthorOfPublication.latestForDiscovery | a223d3c0-9c7f-4ef0-854c-fdb7692c79e7 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- documento.pdf
- Size:
- 314.5 KB
- Format:
- Adobe Portable Document Format
- Description:
- document
