Publication: Outlier detection with data mining techniques and statistical methods
| dc.contributor.author | Orellana Cordero, Marcos Patricio | |
| dc.contributor.author | Cedillo Orellana, Irene Priscila | |
| dc.date.accessioned | 2020-06-15T22:05:16Z | |
| dc.date.available | 2020-06-15T22:05:16Z | |
| dc.date.issued | 2019 | |
| dc.description | The outlier detection in the field of data mining and Knowledge Discovering from Data (KDD) is capturing special interest due to its benefits. It can be applied in the financial area; because the obtained data patterns can help finding possible frauds and user errors. Therefore, it is essential to assess the truthfulness of the information. In this context, data auditory process uses techniques of data mining that play a significant role in the detection of unusual behavior. Here, a method for detecting values that can be considered as outliers in a nominal database is proposed. The basic idea in this method is to implement: a Global k-Nearest Neighbors algorithm, a clustering algorithm named k-means, and a statistical method of chi-square. The application of algorithms has been developed with a database of candidate people for the granting of a loan. Each test was made on a dataset of 1180 registers in which outliers have been introduced deliberately. The experimental results show that the method is able to detect all introduced values, which were previously labeled to be differentiated. Consequently, there were found a total of 48 tuples with outliers of 11 nominal columns. © 2019 IEEE. | |
| dc.description.abstract | The outlier detection in the field of data mining and Knowledge Discovering from Data (KDD) is capturing special interest due to its benefits. It can be applied in the financial area; because the obtained data patterns can help finding possible frauds and user errors. Therefore, it is essential to assess the truthfulness of the information. In this context, data auditory process uses techniques of data mining that play a significant role in the detection of unusual behavior. Here, a method for detecting values that can be considered as outliers in a nominal database is proposed. The basic idea in this method is to implement: a Global k-Nearest Neighbors algorithm, a clustering algorithm named k-means, and a statistical method of chi-square. The application of algorithms has been developed with a database of candidate people for the granting of a loan. Each test was made on a dataset of 1180 registers in which outliers have been introduced deliberately. The experimental results show that the method is able to detect all introduced values, which were previously labeled to be differentiated. Consequently, there were found a total of 48 tuples with outliers of 11 nominal columns. © 2019 IEEE. | |
| dc.description.city | Quito | |
| dc.identifier.doi | 10.1109/INCISCOS49368.2019.00017 | |
| dc.identifier.isbn | 978-1-7281-5581-4 | |
| dc.identifier.issn | 0000-0000 | |
| dc.identifier.uri | https://ieeexplore.ieee.org/document/9052236 | |
| dc.language.iso | es_ES | |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
| dc.source | Proceedings - 2019 International Conference on Information Systems and Computer Science, INCISCOS 2019 | |
| dc.subject | -Chi-square | |
| dc.subject | -Data-mining | |
| dc.subject | -Financial-fraud | |
| dc.subject | -KNN | |
| dc.subject | Outlier | |
| dc.title | Outlier detection with data mining techniques and statistical methods | |
| dc.type | ARTÍCULO DE CONFERENCIA | |
| dc.ucuenca.afiliacion | Orellana, M., Universidad del Azuay, Cuenca, Ecuador | |
| dc.ucuenca.afiliacion | Cedillo, I., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador | |
| dc.ucuenca.areaconocimientofrascatiamplio | 2. Ingeniería y Tecnología | |
| dc.ucuenca.areaconocimientofrascatidetallado | 2.2.4 Ingeniería de La Comunicación y de Sistemas | |
| dc.ucuenca.areaconocimientofrascatiespecifico | 2.2 Ingenierias Eléctrica, Electrónica e Información | |
| dc.ucuenca.areaconocimientounescoamplio | 07 - Ingeniería, Industria y Construcción | |
| dc.ucuenca.areaconocimientounescodetallado | 0714 - Electrónica y Automatización | |
| dc.ucuenca.areaconocimientounescoespecifico | 071 - Ingeniería y Profesiones Afines | |
| dc.ucuenca.comiteorganizadorconferencia | Sergio Luján,Oswaldo Moscoso,Luis Terán,R.S. Nithin,Giancarlo Agostini ,Diego Ordóñez,William Chamorro,Joel Paredes,Guillermo Mosquera,Estevan Gómez. | |
| dc.ucuenca.conferencia | 4th International Conference on Information Systems and Computer Science, INCISCOS 2019 | |
| dc.ucuenca.embargoend | 2050-06-15 | |
| dc.ucuenca.embargointerno | 2050-06-15 | |
| dc.ucuenca.fechafinconferencia | 2019-11-22 | |
| dc.ucuenca.fechainicioconferencia | 2019-11-20 | |
| dc.ucuenca.idautor | 0102668209 | |
| dc.ucuenca.idautor | 0102815842 | |
| dc.ucuenca.indicebibliografico | SCOPUS | |
| dc.ucuenca.organizadorconferencia | Institute of Electrical and Electronics Engineers Inc. | |
| dc.ucuenca.pais | ECUADOR | |
| dc.ucuenca.urifuente | https://ieeexplore.ieee.org/xpl/conhome/9039808/proceeding | |
| dc.ucuenca.version | Versión publicada | |
| dc.ucuenca.volumen | Volumen 11, no 1 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 9ecaad85-5b06-4b92-b05c-0d89c7b10660 | |
| relation.isAuthorOfPublication.latestForDiscovery | 9ecaad85-5b06-4b92-b05c-0d89c7b10660 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- documento.pdf
- Size:
- 56.85 KB
- Format:
- Adobe Portable Document Format
- Description:
- document
