Publication:
Cognitive granular-based path planning and tracking for intelligent vehicle with multi-segment bezier curve stitching

dc.contributor.authorMinchala Ávila, Luis Ismael
dc.date.accessioned2023-10-12T16:40:44Z
dc.date.available2023-10-12T16:40:44Z
dc.date.issued2023
dc.description.abstractUnmanned vehicles are currently facing many difficulties and challenges in improving safety performance when running in complex urban road traffic environments, such as low intelligence and poor comfort performance in the driving process. The real-time performance of vehicles and the comfort requirements of passengers in path planning and tracking control of unmanned vehicles have attracted more and more attentions. In this paper, in order to improve the real-time performance of the autonomous vehicle planning module and the comfort requirements of passengers that a local granular-based path planning method and tracking control based on multisegment Bezier curve splicing and model predictive control theory are proposed. Especially, the maximum trajectory curvature satisfying ride comfort is regarded as an important constraint condition, and the corresponding curvature threshold is utilized to calculate the control points of Bezier curve. By using low-order interpolation curve splicing, the planning computation is reduced, and the real-time performance of planning is improved, compared with one-segment curve fitting method. Furthermore, the comfort performance of the planned path is reflected intuitively by the curvature information of the path. Finally, the effectiveness of the proposed control method is verified by the co-simulation platform built by MATLAB/Simulink and Carsim. The simulation results show that the path tracking effect of multisegment Bezier curve fitting is better than that of high-order curve planning in terms of real-time performance and comfort.
dc.identifier.doi10.32604/iasc.2023.036633
dc.identifier.issn1079-8587
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/43139
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85160428234&origin=resultslist&sort=plf-f&src=s&sid=3b5c9a1935da764ddc6280100c40d96d&sot=b&sdt=b&s=TITLE-ABS-KEY%28Cognitive+granular-based+path+planning+and+tracking+for+intelligent+vehicle+with+multi-segment+bezier+curve+stitching%29&sl=132&sessionSearchId=3b5c9a1935da764ddc6280100c40d96d
dc.language.isoes_ES
dc.sourceIntelligent Automation and Soft Computing
dc.subjectData analysis techniques
dc.subjectTracking control
dc.subjectPath planning
dc.subjectIntelligent vehicle
dc.titleCognitive granular-based path planning and tracking for intelligent vehicle with multi-segment bezier curve stitching
dc.typeARTÍCULO
dc.ucuenca.afiliacionMinchala, L., Universidad de Cuenca, Departamento de Ingeniería Eléctrica, Electrónica y Telecomunicaciones(DEET), Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.1 Ingeniería Eléctrica y Electrónica
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0713 - Electricidad y Energia
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.correspondenciaMinchala Avila, Luis Ismael, ismael.minchala@ucuenca.edu.ec
dc.ucuenca.cuartilQ2
dc.ucuenca.factorimpacto0.297
dc.ucuenca.idautor0301453486
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.techscience.com/journal/iasc
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolumen 37, número 1
dspace.entity.typePublication
relation.isAuthorOfPublicationa3e784e2-0457-4d35-911e-12908570f43c
relation.isAuthorOfPublication.latestForDiscoverya3e784e2-0457-4d35-911e-12908570f43c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description:
document

Collections