Publication:
Probabilistic forecasting of drought events using Markov chain- and Bayesian network-based models: A case study of an Andean regulated river basin

dc.contributor.authorAvilés Añazco, Alex Manuel
dc.contributor.authorCélleri Alvear, Rolando Enrique
dc.date.accessioned2018-01-11T16:47:29Z
dc.date.available2018-01-11T16:47:29Z
dc.date.issued2016-01-01
dc.description.abstractThe scarcity of water resources in mountain areas can distort normal water application patterns with among other effects, a negative impact on water supply and river ecosystems. Knowing the probability of droughts might help to optimize a priori the planning and management of the water resources in general and of the Andean watersheds in particular. This study compares Markov chain- (MC) and Bayesian network- (BN) based models in drought forecasting using a recently developed drought index with respect to their capability to characterize different drought severity states. The copula functions were used to solve the BNs and the ranked probability skill score (RPSS) to evaluate the performance of the models. Monthly rainfall and streamflow data of the Chulco River basin, located in Southern Ecuador, were used to assess the performance of both approaches. Global evaluation results revealed that the MC-based models predict better wet and dry periods, and BN-based models generate slightly more accurately forecasts of the most severe droughts. However, evaluation of monthly results reveals that, for each month of the hydrological year, either the MC- or BN-based model provides better forecasts. The presented approach could be of assistance to water managers to ensure that timely decision-making on drought response is undertaken.
dc.identifier.doi10.3390/w8020037
dc.identifier.issn20734441
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84960093877&doi=10.3390%2fw8020037&partnerID=40&md5=60ee68be59fdeb2caed89bf246e76c53
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/29129
dc.language.isoen_US
dc.publisherMDPI AG
dc.sourceWater (Switzerland)
dc.subjectAndean Watersheds
dc.subjectBayesian Networks
dc.subjectCopulas
dc.subjectDrought Index
dc.subjectMarkov Chains
dc.subjectProbabilistic Drought Forecasting
dc.titleProbabilistic forecasting of drought events using Markov chain- and Bayesian network-based models: A case study of an Andean regulated river basin
dc.typeArticle
dc.ucuenca.afiliacionavilés, a., departamento de recursos hídricos y ciencias ambientales, facultad de ciencias químicas, universidad de cuenca, víctor manuel albornoz y los cerezos, campus balzay, cuenca, ecuador
dc.ucuenca.afiliacioncélleri, r., departamento de recursos hídricos y ciencias ambientales, facultad de ciencias agropecuarias, universidad de cuenca, víctor manuel albornoz y los cerezos, campus balzay, cuenca, ecuador
dc.ucuenca.correspondenciaAvilés, A.; Departamento de Recursos Hídricos y Ciencias Ambientales, Facultad de Ciencias Químicas, Universidad de Cuenca, Víctor Manuel Albornoz y los Cerezos, Campus BalzayEcuador; email: alex.aviles@ucuenca.edu.ec
dc.ucuenca.cuartilQ2
dc.ucuenca.embargoend2022-01-01 0:00
dc.ucuenca.factorimpacto0.548
dc.ucuenca.idautor0102247186
dc.ucuenca.idautor0602794406
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones3
dc.ucuenca.volumen8
dspace.entity.typePublication
relation.isAuthorOfPublication222503fc-0fb8-42d0-8b4f-ef411570f098
relation.isAuthorOfPublication3bc97ee0-63fd-4b9c-85eb-5f399fa3b5ac
relation.isAuthorOfPublication.latestForDiscovery222503fc-0fb8-42d0-8b4f-ef411570f098

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
168.92 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
19.94 KB
Format:
Plain Text
Description:

Collections