Publication: Probabilistic forecasting of drought events using Markov chain- and Bayesian network-based models: A case study of an Andean regulated river basin
| dc.contributor.author | Avilés Añazco, Alex Manuel | |
| dc.contributor.author | Célleri Alvear, Rolando Enrique | |
| dc.date.accessioned | 2018-01-11T16:47:29Z | |
| dc.date.available | 2018-01-11T16:47:29Z | |
| dc.date.issued | 2016-01-01 | |
| dc.description.abstract | The scarcity of water resources in mountain areas can distort normal water application patterns with among other effects, a negative impact on water supply and river ecosystems. Knowing the probability of droughts might help to optimize a priori the planning and management of the water resources in general and of the Andean watersheds in particular. This study compares Markov chain- (MC) and Bayesian network- (BN) based models in drought forecasting using a recently developed drought index with respect to their capability to characterize different drought severity states. The copula functions were used to solve the BNs and the ranked probability skill score (RPSS) to evaluate the performance of the models. Monthly rainfall and streamflow data of the Chulco River basin, located in Southern Ecuador, were used to assess the performance of both approaches. Global evaluation results revealed that the MC-based models predict better wet and dry periods, and BN-based models generate slightly more accurately forecasts of the most severe droughts. However, evaluation of monthly results reveals that, for each month of the hydrological year, either the MC- or BN-based model provides better forecasts. The presented approach could be of assistance to water managers to ensure that timely decision-making on drought response is undertaken. | |
| dc.identifier.doi | 10.3390/w8020037 | |
| dc.identifier.issn | 20734441 | |
| dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960093877&doi=10.3390%2fw8020037&partnerID=40&md5=60ee68be59fdeb2caed89bf246e76c53 | |
| dc.identifier.uri | http://dspace.ucuenca.edu.ec/handle/123456789/29129 | |
| dc.language.iso | en_US | |
| dc.publisher | MDPI AG | |
| dc.source | Water (Switzerland) | |
| dc.subject | Andean Watersheds | |
| dc.subject | Bayesian Networks | |
| dc.subject | Copulas | |
| dc.subject | Drought Index | |
| dc.subject | Markov Chains | |
| dc.subject | Probabilistic Drought Forecasting | |
| dc.title | Probabilistic forecasting of drought events using Markov chain- and Bayesian network-based models: A case study of an Andean regulated river basin | |
| dc.type | Article | |
| dc.ucuenca.afiliacion | avilés, a., departamento de recursos hídricos y ciencias ambientales, facultad de ciencias químicas, universidad de cuenca, víctor manuel albornoz y los cerezos, campus balzay, cuenca, ecuador | |
| dc.ucuenca.afiliacion | célleri, r., departamento de recursos hídricos y ciencias ambientales, facultad de ciencias agropecuarias, universidad de cuenca, víctor manuel albornoz y los cerezos, campus balzay, cuenca, ecuador | |
| dc.ucuenca.correspondencia | Avilés, A.; Departamento de Recursos Hídricos y Ciencias Ambientales, Facultad de Ciencias Químicas, Universidad de Cuenca, Víctor Manuel Albornoz y los Cerezos, Campus BalzayEcuador; email: alex.aviles@ucuenca.edu.ec | |
| dc.ucuenca.cuartil | Q2 | |
| dc.ucuenca.embargoend | 2022-01-01 0:00 | |
| dc.ucuenca.factorimpacto | 0.548 | |
| dc.ucuenca.idautor | 0102247186 | |
| dc.ucuenca.idautor | 0602794406 | |
| dc.ucuenca.indicebibliografico | SCOPUS | |
| dc.ucuenca.numerocitaciones | 3 | |
| dc.ucuenca.volumen | 8 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 222503fc-0fb8-42d0-8b4f-ef411570f098 | |
| relation.isAuthorOfPublication | 3bc97ee0-63fd-4b9c-85eb-5f399fa3b5ac | |
| relation.isAuthorOfPublication.latestForDiscovery | 222503fc-0fb8-42d0-8b4f-ef411570f098 |
