Publication:
Real-time bot infection detection system using DNS fingerprinting and machine-learning

dc.contributor.authorQuezada Pauta, Vicente Geovanny
dc.contributor.authorAstudillo Salinas, Darwin Fabián
dc.date.accessioned2023-10-03T14:13:03Z
dc.date.available2023-10-03T14:13:03Z
dc.date.issued2023
dc.description.abstractIn today's cyberattacks, botnets are used as an advanced technique to generate sophisticated and coordinated attacks. Infected systems connect to a command and control (C&C) server to receive commands and attack. Thus, detecting infected hosts makes it possible to protect the network's resources and prevent them from illicit activities toward third parties. This research elaborates on the design, implementation, and results of a bot infection detection system based on Domain Name System (DNS) traffic events for a network corporation. An infection detection feasibility analysis is performed by creating fingerprints. The traces are generated from a numerical analysis of 13 attributes. These attributes are obtained from the DNS logs of a DNS server. It looks for fingerprint anomalies using Isolation Forest to label a host as infected or not. In addition, on the traces cataloged as anomalous, a search will be carried out for queries to domains generated by Domain Generation Algorithms (DGA). Then, Random Forest generates a model that detects future bot infections on hosts. The devised system integrates the ELK stack and Python. This integration facilitates the management, transformation, and storage of events, generation of fingerprints, machine learning application, and analysis of fingerprint classification results with a precision greater than 99%.
dc.identifier.doi10.1016/j.comnet.2023.109725
dc.identifier.issn1389-1286
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/42999
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85151397842&origin=resultslist&sort=plf-f&src=s&sid=fabc4659b4b8ab2a3a09d48deb0ba195&sot=b&sdt=b&s=TITLE-ABS-KEY%28Real-time+bot+infection+detection+system+using+DNS+fingerprinting+and+machine-learning%29&sl=101&sessionSearchId=fabc4659b4b8ab2a3a09d48deb0ba195
dc.language.isoes_ES
dc.sourceComputer Networks
dc.subjectMachine learning
dc.subjectAnomaly detection
dc.subjectBot detection
dc.subjectBotnet
dc.subjectDNS-based bot detection
dc.subjectELK stack
dc.subjectIsolation forests
dc.subjectRandom forests
dc.titleReal-time bot infection detection system using DNS fingerprinting and machine-learning
dc.typeARTÍCULO
dc.ucuenca.afiliacionQuezada, V., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.afiliacionAstudillo, D., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.11.2 Otras Ingenierias y Tecnologías
dc.ucuenca.areaconocimientofrascatiespecifico2.11 Otras Ingenierias y Tecnologías
dc.ucuenca.areaconocimientounescoamplio06 - Información y Comunicación (TIC)
dc.ucuenca.areaconocimientounescodetallado0613 - Software y Desarrollo y Análisis de Aplicativos
dc.ucuenca.areaconocimientounescoespecifico061 - Información y Comunicación (TIC)
dc.ucuenca.correspondenciaQuezada Pauta, Vicente Geovanny, vicente.quezada@ucuenca.edu.ec
dc.ucuenca.cuartilQ1
dc.ucuenca.factorimpacto1.63
dc.ucuenca.idautor0103907036
dc.ucuenca.idautor0106338320
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.urifuentehttps://www.sciencedirect.com/journal/computer-networks
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenVolume 228
dspace.entity.typePublication
relation.isAuthorOfPublication0ace217e-689c-4f2a-bbbf-0b5171b24110
relation.isAuthorOfPublication.latestForDiscovery0ace217e-689c-4f2a-bbbf-0b5171b24110

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format
Description:
document

Collections