Publication:
a relaying graph and special strong product for zero-error problems in primitive relay channels

dc.contributor.authorPalacio Baus, Kenneth Samuel
dc.contributor.ponentePalacio Baus, Kenneth Samuel
dc.date.accessioned2019-02-06T16:31:33Z
dc.date.available2019-02-06T16:31:33Z
dc.date.issued2018
dc.descriptionA primitive relay channel (PRC) has one source (S) communicating a message to one destination (D) with the help of a relay (R). The link between R and D is considered to be noiseless, of finite capacity, and parallel to the link between S and (R,D). Prior work has established, for any fixed number of channel uses, the minimal R-D link rate needed so that the overall S-D message rate equals the zero-error single-input multiple output outer bound (Problem 1). The zero-error relaying scheme was expressed as a coloring of a carefully defined 'relaying compression graph'. It is shown here that this relaying compression graph for n channel uses is not obtained as a strong product from its n = 1 instance. Here we define a new graph, the 'primitive relaying graph' and a new 'special strong product' such that the n-channel use primitive relaying graph corresponds to the n-fold special strong product of the n = 1 graph. We show how the solution to Problem 1 can be obtained from this new primitive relaying graph directly. Further study of this primitive relaying graph has the potential to highlight the structure of optimal codes for zero-error relaying. © 2018 IEEE.
dc.description.abstractA primitive relay channel (PRC) has one source (S) communicating a message to one destination (D) with the help of a relay (R). The link between R and D is considered to be noiseless, of finite capacity, and parallel to the link between S and (R,D). Prior work has established, for any fixed number of channel uses, the minimal R-D link rate needed so that the overall S-D message rate equals the zero-error single-input multiple output outer bound (Problem 1). The zero-error relaying scheme was expressed as a coloring of a carefully defined 'relaying compression graph'. It is shown here that this relaying compression graph for n channel uses is not obtained as a strong product from its n = 1 instance. Here we define a new graph, the 'primitive relaying graph' and a new 'special strong product' such that the n-channel use primitive relaying graph corresponds to the n-fold special strong product of the n = 1 graph. We show how the solution to Problem 1 can be obtained from this new primitive relaying graph directly. Further study of this primitive relaying graph has the potential to highlight the structure of optimal codes for zero-error relaying. © 2018 IEEE.
dc.description.cityColorado
dc.identifier.doi10.1109/ISIT.2018.8437657
dc.identifier.isbn978-153864780-6
dc.identifier.issn2157-8095
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/31929
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85052438684&doi=10.1109%2fISIT.2018.8437657&origin=inward&txGid=54e86b55e00627408a2d18d0d4234f34
dc.language.isoes_ES
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.sourceIEEE International Symposium on Information Theory - Proceedings
dc.subjectZero-Error Problems
dc.subjectZero-Error Relaying Scheme
dc.subjectPrimitive Relaying Graph
dc.subjectRelaying Compression Graph
dc.titlea relaying graph and special strong product for zero-error problems in primitive relay channels
dc.typeARTÍCULO DE CONFERENCIA
dc.ucuenca.afiliacionPalacio, K., Universidad de Cuenca, Cuenca, Ecuador
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatidetallado2.2.1 Ingeniería Eléctrica y Electrónica
dc.ucuenca.areaconocimientofrascatiespecifico2.2 Ingenierias Eléctrica, Electrónica e Información
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción
dc.ucuenca.areaconocimientounescodetallado0714 - Electrónica y Automatización
dc.ucuenca.areaconocimientounescoespecifico071 - Ingeniería y Profesiones Afines
dc.ucuenca.comiteorganizadorconferenciaMahesh K Varanasi (University of Colorado, USA)
dc.ucuenca.conferencia2018 IEEE International Symposium on Information Theory, ISIT 2018
dc.ucuenca.correspondenciaPalacio Baus, Kenneth Samuel, kpalac2@uic.edu
dc.ucuenca.embargoend2050-12-31
dc.ucuenca.embargointerno2050-12-31
dc.ucuenca.fechafinconferencia2018-06-22
dc.ucuenca.fechainicioconferencia2018-06-17
dc.ucuenca.idautor0103566360
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.numerocitaciones0
dc.ucuenca.organizadorconferenciaRuediger L Urbanke (EPFL, Switzerland)
dc.ucuenca.paisESTADOS UNIDOS
dc.ucuenca.urifuentehttps://ieeexplore.ieee.org/document/8437657/keywords#keywords
dc.ucuenca.versionVersión publicada
dc.ucuenca.volumenvolumen 2018-June
dspace.entity.typePublication
relation.isAuthorOfPublication2541297e-ad0c-4d25-8354-4d5bce749f5c
relation.isAuthorOfPublication.latestForDiscovery2541297e-ad0c-4d25-8354-4d5bce749f5c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento.pdf
Size:
606.77 KB
Format:
Adobe Portable Document Format
Description:
document

Collections