Person: Córdova Mora, Mario Andrés
Loading...
Email Address
Birth Date
1989-06-08
ORCID
0000-0001-8026-0387
Scopus Author ID
56845015100
Web of Science ResearcherID
Afiliación
Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
País
Ecuador
Research Projects
Organizational Units
Facultad de Ingeniería
La Facultad de Ingeniería, a inicios de los años 60, mediante resolución del Honorable Consejo Universitario, se formalizó la Facultad de Ingeniería de la Universidad de Cuenca, conformada por las escuelas de Ingeniería Civil y Topografía. Esta nueva estructura permitió una mayor especialización y fortalecimiento en áreas clave para el desarrollo regional. Cuenta con programas académicos reconocidos internacionalmente, que promueven y lideran actividades de investigación. Aplica un modelo educativo centrado en el estudiante y con procesos de mejora continua. Establece como prioridad una educación integra, la formación humanística es parte del programa de estudios que complementa a la sólida preparación científico-técnica. Las actividades culturales pertenecen a un programa permanente y activo al interior de nuestras dependencias, a la par de proyectos que desde el alumnado y bajo la supervisión de docentes cumplen con servicios de apoyo a nivel local y regional; promoviendo así una vinculación estrecha con la comunidad.
Job Title
Profesor (T)
Last Name
Córdova Mora
First Name
Mario Andrés
Name
12 results
Search Results
Now showing 1 - 10 of 12
Publication Rain gauge inter-comparsion quantifies differences in precipitation monitoring(2020) Padrón Flasher, Ryan Sebastián; Feyen Null, Jan Null; Córdova Mora, Mario Andrés; Crespo Sánchez, Patricio Javier; Célleri Alvear, Rolando EnriqueEfforts to correct precipitation measurements have been ongoing for decades, but are scarce for tropical highlands. Four tipping-bucket (TB) rain gauges with different resolution that are commonly used in the Andean mountain region were compared-one DAVIS-RC-II, one HOBO-RG3-M, and two TE525MM TB gauges (with and without an Alter-Type wind screen). The relative performance of these rain gauges, installed side-by-side in the Zhurucay Ecohydrological Observatory, south Ecuador, at 3780 m a.s.l., was assessed using the TB with the highest resolution (0.1 mm) as reference, i.e. the TE525MM. The effect of rain intensity and wind conditions on gauge performance was estimated as well. Using 2 years of data, results reveal that (i) the precipitation amount for the reference TB is on average 5.6 to 7.2% higher than the rain gauges having a resolution of 0.2 mm and 0.254 mm respectively; (ii) relative underestimation of precipitation from the gauges with coarser resolution is higher during low-intensity rainfall mounting to a maximum deviation of 11% was observed for rain intensities ≤1 mm h−1 ; (iii) precipitation intensities of 2 mm h−1 or less that occur 75% of the time cannot be determined accurately for timescales shorter than 30 minutes because of the gauges’ resolution, e.g. the absolute bias is >10%; and (iv) wind has a similar effect on all sensors. This analysis contributes to increase the accuracy and homogeneity of precipitation measurements throughout the Andean highlands, by quantifying the key role of rain-gauge resolution.Publication Dynamic mapping of evapotranspiration using an energy balance-based model over an andean páramo catchment of southern ecuador(MDPI AG, 2016-01-01) Carrillo Rojas, Galo José; Célleri Alvear, Rolando Enrique; Córdova Mora, Mario AndrésUnderstanding of evapotranspiration (ET) processes over Andean mountain environments is crucial, particularly due to the importance of these regions to deliver water-related ecosystem services. In this context, the detection of spatio-temporal changes in ET remains poorly investigated for specific Andean ecosystems, like the páramo. To overcome this lack of knowledge, we implemented the energy-balance model METRIC with Landsat 7 ETM+ and MODIS-Terra imagery for a páramo catchment. The implementation contemplated adjustments for complex terrain in order to obtain daily, monthly and annual ET maps (between 2013 and 2014). In addition, we compared our results to the global ET product MOD16. Finally, a rigorous validation of the outputs was conducted with residual ET from the water balance. ET retrievals from METRIC (Landsat-based) showed good agreement with the validation-related ET at monthly and annual steps (mean bias error <8 mm. month-1 and annual deviation <17%). However, METRIC (MODIS-based) outputs and the MOD16 product were revealed to be unsuitable for our study due to the low spatial resolution. At last, the plausibility of METRIC to obtain spatial ET retrievals using higher resolution satellite data is demonstrated, which constitutes the first contribution to the understanding of spatially-explicit ET over an alpine catchment in the neo-tropical Andes.Publication Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data(INTERNATIONAL MOUNTAIN SOCIETY, 2015-08-01) Córdova Mora, Mario Andrés; Carrillo Rojas, Galo José; Célleri Alvear, Rolando Enrique; Crespo Sánchez, Patricio Javier(Figure Presented) Reference evapotranspiration (ETo) is often calculated using the Penman-Monteith (FAO 56 PM; Allen et al 1998) method, which requires data on temperature, relative humidity, wind speed, and solar radiation. But in high-mountain environments, such as the Andean páramo, meteorological monitoring is limited and high-quality data are scarce. Therefore, the FAO 56 PM equation can be applied only through the use of an alternative method suggested by the same authors that substitutes estimates for missing data. This study evaluated whether the FAO 56 PM method for estimating missing data can be effectively used for páramo landscapes in the high Andes of southern Ecuador. Our investigation was based on data from 2 automatic weather stations at elevations of 3780 m and 3979 m. We found that using estimated wind speed data has no major effect on calculated ETo but that if solar radiation data are estimated, ETo calculations may be erroneous by as much as 24%; if relative humidity data are estimated, the error may be as high as 14%; and if all data except temperature are estimated, errors higher than 30% may result. Our study demonstrates the importance of using high-quality meteorological data for calculating ETo in the wet páramo landscapes of southern Ecuador.Publication Near-surface air temperature lapse rate over complex terrain in the Southern Ecuadorian Andes: Implications for temperature mapping(Institute of arctic and alpine research, 2016-11-01) Córdova Mora, Mario Andrés; Abril Orellana, Olmedo Andrés; Carrillo Rojas, Galo José; Célleri Alvear, Rolando Enrique; Orellana-Alvear, JNear-surface air temperature variation with altitude (Tlr) is important for several applications including hydrology, ecology, climate, and biodiversity. To calculate Tlr accurately, a dense monitoring network over an altitudinal gradient is needed. Typically, meteorological monitoring in mountain regions is scarce and not adequate to calculate Tlr correctly. To overcome this problem in our region, we monitored temperature over a gradient ranging 2600-4200 m a.s.l. during an 18 month period. Using these data, we calculated Tlr for the first time at this altitude in the Andes and tested the impact of using the standard Tlr values instead of the observed ones to map temperature by means of the MTCLIM model. We found that annual lapse rate values (6.9 °C km-1 for Tmean, 5.5 °C km-1 for Tmin, and 8.8 °C km-1 for Tmax) differ significantly from the MTCLIM default values and that temperature maps improved vastly when measured Tlr was entered, especially for Tmax and Tmin. Our results may be representative of the broader area, as Tlr in our study period is not affected by microclimatic conditions generated by differences in topography and land cover between our monitoring sites; moreover, observed temperature during our study period was found to be representative of the longer-term annual climatology of the region.Publication Estimating turbulent fluxes in the tropical andes(2020) Córdova Mora, Mario Andrés; Bogerd, Linda; Smeets, Paul; Carrillo Rojas, Galo JoséThe correct estimation of Sensible Heat Flux (H) and Latent Heat Flux (LE) (i.e., turbulent fluxes) is vital in the understanding of exchange of energy and mass among hydrosphere, atmosphere, and biosphere in an ecosystem. One of the most popular methods to measure these fluxes is the Eddy Covariance (EC) technique; however, there are a number of setbacks to its application, especially in remote and topographically complex terrain such as the higher altitudes of the Andes. Efforts have been made by the scientific community to parameterise these fluxes based on other more commonly measured variables. One of the most widespread methods is the so-called bulk method, which relates average temperature, humidity, and wind vertical profiles to the turbulent fluxes. Another approach to estimate LE is the Penman-Monteith (PM) equation which uses meteorological measurements at a single level. The objective of this study was to validate these methods for the first time in the Tropical Andes in Southern Ecuador (in the páramo ecosystem at 3780 m a.s.l.) using EC and meteorological measurements. It was determined that the bulk method was the best to estimate H, although some adjustments had to be made to the typical assumptions used to estimate surface meteorological values. On the other hand, the PM equation yielded the best LE estimations. For both fluxes, the error in the estimations was within the uncertainty range of the EC measurements. It can be concluded that it is possible to accurately estimate H and LE using the methods described in this paper in this ecosystem when no direct measurements are available.Publication Improving reference evapotranspiration (ETo) calculation under limited data conditions in the high Tropical Andes(2022) Carrillo Rojas, Galo José; Córdova Mora, Mario Andrés; Vásquez Ojeda, Cristina Alejandra; Célleri Alvear, Rolando EnriqueThe computation of the reference crop evapotranspiration (ETo) using the FAO56 Penman-Monteith equation (PM-ETo) requires data on maximum and minimum air temperatures (Tmax, Tmin), relative humidity (RH), solar radiation (Rs), and wind speed (u2). However, the records of meteorological variables are often incomplete or of poor quality. Frequently, in the mountain areas such as those of the Andes, environmental sensors are subject to harsh conditions, due to the diurnal/nocturnal climatic variability causing challenging conditions for meteorological monitoring, which leads to data loss. For high-elevation landscapes like the Andes, the missing variables of vapor pressure deficit and solar radiation cause a high impact on PM-ETo calculation. To assess these limitations, several methods relying on maximum and minimum temperature to estimate the missing variables have been considered in the present investigation. Based on data from three automatic weather stations in the high Tropical Andes (humid páramo, 3298 – 3955 m a.s.l.), we found that the calibration and validation of methods were essential to estimate Rs. Using the (De Jong and Stewart, 1993) (Rs-DS) method we retrieved the highest performance, a RMSE between 2.89 and 3.81 MJ m−2 day−1. Moreover, In the absence of RH observations, replacing the dew point temperature (Tdew) by Tmin was a reliable alternative, when apply the method of (Allen et al., 1998) (VPD-FAO) which showed the highest performance with RMSE between 0.08 and 0.12 kPa. These results yielded highly accurate PM-ETo estimates, with RMSE between 0.29 and 0.34 mm day−1 and RMSE between 0.12 and 0.18 mm day−1, respectively. As expected, when both variables were missing, the ETo calculation increased its error, with an RMSE between 0.32 and 0.42 mm day−1. A proper estimation of ETo in the Andean páramo contributes to improved water productivity for domestic and industrial uses, irrigated agriculture, and hydropower.Publication Hydrometeorological factors controlling the stable isotopic composition of precipitation in the highlands of south Ecuador(2022) Zhiña Villa, Dario Xavier; Mosquera Rojas, Giovanny Mauricio; Esquivel Hernández, Germain; Córdova Mora, Mario Andrés; Sánchez Murillo, Ricardo; Orellana Alvear, Johanna Marlene; Crespo Sánchez, Patricio JavierKnowledge about precipitation generation remains limited in the tropical Andes due to the lack of water stable isotope (WSI) data. Therefore, we investigated the key factors controlling the isotopic composition of precipitation in the Páramo highlands of southern Ecuador using event-based (high frequency) WSI data collected between November 2017 and October 2018. Our results show that air masses reach the study site preferentially from the eastern flank of the Andes through the Amazon basin (73.2%), the Orinoco plains (11.2%), and the Mato Grosso Massif (2.7%), whereas only a small proportion stems from the Pacific Ocean (12.9%). A combination of local and regional factors influences the δ18O isotopic composition of precipitation. Regional atmospheric features (Atlantic moisture, evapotranspiration over the Amazon Forest, continental rain-out, and altitudinal lapse rates) are what largely control the meteoric δ18O composition. Local precipitation, temperature, and the fraction of precipitation corresponding to moderate to heavy rainfalls are also key features influencing isotopic ratios, highlighting the importance of localized convective precipitation at the study site. Contrary to δ18O, d-excess values showed little temporal variation and could not be statistically linked to regional or local hydrometeorological features. The latter reveals that large amounts of recycled moisture from the Amazon basin contributes to local precipitation regardless of season and predominant trajectories from the east. Our findings will help to improve the isotope-based climatic models and enhance paleoclimate reconstructions in the southern Ecuador highlands. © 2022 American Meteorological Society.Publication Downscaling precipitation and temperature in the Andes: applied methods and performance—a systematic review protocol(2023) Nuñez Mejía, Santiago Xavier; Córdova Mora, Mario Andrés; Gualán Saavedra, Ronald Marcelo; Crespo Sánchez, Patricio JavierBackground: Global warming and climate change are threats to the world. Warmer temperatures and changes in precipitation patterns alter water availability and increase the occurrence of extreme weather events. South America and the Andes are vulnerable regions to climate change due to inequity and the uneven distribution of resources. Climate change evaluation often relies on the use of general circulation models (GCMs). However, the spatial resolution is too coarse and does not provide a realistic climate representation at a local level. This is of particular importance in mountain areas such as the Andes range, where the heterogeneous topography requires a finer spatial resolution to represent the local physical processes. To this end, statistical and/or dynamical downscaling methods are required. Several approaches and applications of downscaling procedures have been carried out in the countries of this region, with different purposes and performances. However, the main objective is to improve the representation of meteorological variables such as precipitation and temperature. A systematic review of these downscaling applications will identify the performance of the methods applied in the Andes region for the downscaling of precipitation and temperature. In addition, the meta-analysis could detect factors influencing the performance. The overall goal is to highlight promising methods in terms of fitness for use and identify knowledge gaps in the region. Methods: The review will search and examine published and grey literature on downscaling applications of temperature and precipitation in the Andes region. Predetermined criteria for eligibility will allow the screening of the evidence. Then, the method used in each application will be coded and mapped according to the country, purpose, variable, and type of downscaling. At the same time, quantitative and qualitative data will be extracted. The performance metrics are particularly interesting for this review. A meta-analysis will be conducted for those studies with comparable metrics. A narrative synthesis, maps and heatmaps will show the results. Tables, funnel plots, and meta-regressions will present the meta-analysis. Throughout the review, a critical appraisal step will categorize the validity of the evidence.Publication Dynamics of precipitation anomalies in tropical South America(2022) Célleri Alvear, Rolando Enrique; Córdova Mora, Mario Andrés; Van Delden, AarnoutIn this study, precipitation in Tropical South America in the 1931–2016 period is investigated by means of Principal Component Analysis and composite analysis of circulation fields. The associated dynamics are analyzed using the 20th century ERA-20C reanalysis. It is found that the main climatic processes related to precipitation anomalies in Tropical South America are: (1) the intensity and position of the South Atlantic Convergence Zone (SACZ); (2) El Niño Southern Oscillation (ENSO); (3) the meridional position of the Intertropical Convergence Zone (ITCZ), which is found to be related to Atlantic Sea Surface Temperature (SST) anomalies; and (4) anomalies in the strength of the South American Monsoon System, especially the South American Low-Level Jet (SALLJ). Interestingly, all of the analyzed anomalies are related to processes that operate from the Atlantic Ocean, except for ENSO. Results from the present study are in agreement with the state of the art literature about precipitation anomalies in the region. However, the added strength of the longer dataset and the larger study area improves the knowledge and gives new insights into how climate variability and the resulting dynamics are related to precipitation in Tropical South America.Publication Patterns of alluvial deposition in andean lake consistent with ENSO trigger(2021) Hagemans, Kimberley; Nooren, Kees; de Haas, Tjalling; Córdova Mora, Mario Andrés; Hennekam, Rick; Stekelenburg, Martin CA; Rodbel, Donald T; Middelkoop, Hans; Donders, TimmeThe laminated sediment record from Laguna Pallcacocha, Ecuador, is widely used as a sensitive recorder of past variability in the El Nino-Southern Oscillation. However, limited knowledge of local meteorology, ~hydrogeomorphic processes, and the lateral variability of the lacustrine stratigraphy have resulted in some ambiguity in proxy interpretation. In this study, we report new high-resolution meteorological data, hydrogeomorphic mapping of the catchment and geochemistry of the lake’s sediments. We show that the fine clastic layers are deposited from alluvial activity in the catchment related to intensive rainfall events originating from the Pacific. Frequency analyses of the geochemistry of the sediments indicates that the clastic layers in L. Pallcacocha fall into the characteristic ENSO frequency band and most likely record Eastern Pacific and Coastal Pacific El Nino events. We also illustrate that recent debris ~ flow deposition has resulted in an abrupt avulsion of the main fluvial channels, redirecting sediment input between the lake’s two basins and possibly influencing the lithostratigraphy of the sediment package of L. Pallcacocha
