Person: Álvarez Lloret, Edgar Paúl
Loading...
Email Address
Birth Date
1973-08-14
ORCID
0000-0003-2146-5969
Scopus Author ID
Web of Science ResearcherID
Afiliación
Universidad de Cuenca, Cuenca, Ecuador
Universidad de Cuenca, Departamento de Biociencias, Cuenca, Ecuador
Universidad de Cuenca, Departamento de Biociencias, Cuenca, Ecuador
País
Ecuador
Research Projects
Organizational Units
Facultad de Ciencias Químicas
Fundada en 1955 como la Escuela de Química Industrial, la facultad ha sido un pilar fundamental en la formación de profesionales altamente capacitados, comprometidos con el desarrollo de la ciencia, la educación y el bienestar social. La Facultad de Ciencias Químicas pone a consideración su trabajo académico, investigativo y de vinculación con la sociedad, desarrollado a través de la práctica de una docencia de calidad, investigación e innovación en su área de estudio. Desde su oficio de conocimiento se permite contribuir a la sociedad con cuatro carreras: Bioquímica y Farmacia, Ingeniería Química, Ingeniería Ambiental e Ingeniería Industrial. Su carta de presentación en la Academia, la coloca como una dependencia dinámica, donde confluye la solidez de una trayectoria de más de sesenta años. Aquí se trabaja en una continua formación de pregrado y posgrado de la más alta calidad, mediante la mejora continua con la innovación y a la vanguardia de las ciencias químicas.
Job Title
Profesor (T)
Last Name
Álvarez Lloret
First Name
Edgar Paúl
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Design and development of a catalytic fixed-bed reactor for gasification of banana biomass in hydrogen production(2022) Tacuri Sarmiento, Diego Mauricio; Andrade Herrera, Christian Javier; Álvarez Lloret, Edgar Paúl; Abril González, Mónica Fernanda; Salamea Piedra, Teresita Silvana; Pinos Vélez, Verónica Patricia; Jara Cobos, Lourdes Elizabeth; Montero Izquierdo, Iván AndrésHydrogen produced from biomass is an alternative energy source to fossil fuels. In this study, hydrogen production by gasification of the banana plant is proposed. A fixed-bed catalytic reactor was designed considering fluidization conditions and a height/diameter ratio of 3/1. Experimentation was carried out under the following conditions: 368 °C, atmospheric pressure, 11.75 g of residual mass of the banana (pseudo-stem), an average particle diameter of 1.84 mm, and superheated water vapor as a gasifying agent. Gasification reactions were performed using a catalyzed and uncatalyzed medium to compare the effectiveness of each case. The catalyst was Ni/Al2O3, synthesized by coprecipitation. The gas mixture produced from the reaction was continuously condensed to form a two-phase liquid–gas system. The synthesis gas was passed through a silica gel filter and analyzed online by gas chromatography. To conclude, the results of this study show production of 178 mg of synthesis gas for every 1 g of biomass and the selectivity of hydrogen to be 51.8 mol% when a Ni 2.5% w/w catalyst was used. The amount of CO2 was halved, and CO was reduced from 3.87% to 0% in molar percentage. Lastly, a simulation of the distribution of temperatures inside the furnace was developed; the modeled behavior is in agreement with experimental observations.Publication Biodiesel Production by Transesterification of Recycled Oil Catalyzed with Zinc Oxide Prepared Starting from Used Batteries(2023) Seminario Calle, Doménica Paulina; Álvarez Lloret, Edgar Paúl; Duque Sarango, Paola Jackeline; Cisneros Ramos, Juan Fernando; Pinos Vélez, Verónica Patricia; Ortega Maldonado, Melissa Isabel; Echeverria Paredes, Paulina Alejandra; Montero Izquierdo, Iván AndrésThe consumption of batteries and cooking oil have been increasing. Most used batteries are disposed of incorrectly, leading to health and environmental problems because of their composition. In a similar form, cooking oil, once used, is often released by the discharge reaching the wastewater, polluting soil, and water, which affects its treatment. In Ecuador, these environmental passives are recollected and stored without further treatment, which is a temporary and unsustainable solution. To address this issue, the circular economy concept has gained increasing attention. In this study, zinc oxide was prepared from discarded batteries using the hydrometallurgical method to use as a catalyst; it achieved 98.49% purity and 56.20% yield and 20.92% of particles presented a particle size of 1–10 nm. Furthermore, the catalyst morphology was investigated in an SEM, which showed that particle size ranged from 155.69 up to 490.15 nm and spherical shapes. Due to its characteristics, the obtained catalyst can be used in the industry instead of the zinc oxide obtained by mining processes. These processes are known to produce heavy contamination in the ecosystems and human health. Additionally, a zinc oxide lifecycle in the environment was analyzed through a material flow analysis (MFA), taking into consideration two paths, one assuming the disposal of used batteries and the other assuming the recycling of zinc. Biodiesel was produced with a heterogeneous catalyst. This took place with a transesterification reaction with used cooking oil, ethanol, and zinc oxide (ZnO) as catalysts. The biodiesel obtained had the following characteristics: 37.55 kJg−1 of heating power, 0.892 gcm−3 of density, 4.189 mm2/s of viscosity, 0.001% of water content, and a 70.91% yield. Furthermore, the energy consumption in biodiesel production was quantified, giving a total of 37.15 kWh. This kind of initiative prevents that waste from becoming environmental pollutants and potential health risks by giving them a second use as a resource. Moreover, turning waste into a valuable product makes the processes self-sustaining and attractive to be implemented.Publication Simulation of the Catalytic Gasification of Banana Biomass in the Production of Hydrogen, Using Glucose as a Model Compound(2023) Bernal Pesantez, Edison Bolivar; Gaona Cumbicos, Jessica; Jara Cobos, Lourdes Elizabeth; Naula Duchi, Kelly Dayanna; Álvarez Lloret, Edgar Paúl; Mejia Galarza, William AndresAbstract: In the face of the climate change problem caused by fossil fuels, it is essential to seek efficient alternative energies with a lower environmental impact that are derived from renewable resources. Biomass gasification technology continues to generate significant interest in sustainable energy research as an alternative to traditional combustion technology. Gasification involves the thermochemical conversion of raw materials, resulting in a highly valuable gaseous product known as synthesis gas, commonly used as a fuel. Its numerous advantages include the availability of raw materials, the reduction in harmful emission streams, performance, and costs. As this topic gains momentum in the global energy framework, it is imperative to advance the maturity of this technology by addressing its weaknesses, primarily in terms of efficiency. The objective of this project was to investigate the hydrogen production process through the simulation of glucose gasification as a representative compound for biomass. This was achieved by conducting an integrated simulation of glucose gasification, encompassing both the heat transfer in the external system and the conversion of glucose into hydrogen gas, using the results obtained in the external system as initial conditions. Interrelated aspects of this complex process, including heat transfer and the kinetics of the gasification process, were modeled. Glucose was selected as the model compound due to its availability, simplicity, fundamental understanding, reproducibility, comparability, knowledge of reaction pathways, and simplification of mathematical models. The simulation resulted in a H2:CO ratio of 2.2, and molar fluxes were obtained for H2, CO, CO2, CH4, and H2O consistent with those typically observed in the gasification process of organic maer. These models were constructed, laying the foundation for the adaptability of subsequent optimization studies.
