Person:
Astudillo Ochoa, Sonia Margoth

Loading...
Profile Picture

Email Address

Birth Date

1978-08-08

ORCID

0000-0002-8351-6031

Scopus Author ID

Web of Science ResearcherID

Afiliación

Universidad de Cuenca, Cuenca, Ecuador
Universidad de Cuenca, Facultad de Ciencias Químicas, Cuenca, Ecuador

País

Ecuador

Research Projects

Organizational Units

Organizational Unit
Facultad de Ciencias Químicas
Fundada en 1955 como la Escuela de Química Industrial, la facultad ha sido un pilar fundamental en la formación de profesionales altamente capacitados, comprometidos con el desarrollo de la ciencia, la educación y el bienestar social. La Facultad de Ciencias Químicas pone a consideración su trabajo académico, investigativo y de vinculación con la sociedad, desarrollado a través de la práctica de una docencia de calidad, investigación e innovación en su área de estudio. Desde su oficio de conocimiento se permite contribuir a la sociedad con cuatro carreras: Bioquímica y Farmacia, Ingeniería Química, Ingeniería Ambiental e Ingeniería Industrial. Su carta de presentación en la Academia, la coloca como una dependencia dinámica, donde confluye la solidez de una trayectoria de más de sesenta años. Aquí se trabaja en una continua formación de pregrado y posgrado de la más alta calidad, mediante la mejora continua con la innovación y a la vanguardia de las ciencias químicas.

Job Title

Profesor (T)

Last Name

Astudillo Ochoa

First Name

Sonia Margoth

Name

Search Results

Now showing 1 - 3 of 3
  • Publication
    Estudio experimental y simulación dinámica de la adsorción de Cd+2 y Pb+2 utilizando cáscara de cacao en columna de lecho fijo
    (2022) Juela Quintuña, Diego Marcelo; Vera Cabezas, Luisa Mayra; Astudillo Ochoa, Sonia Margoth
    The use of biomass as an adsorbent constitutes a potential alternative for the removal of heavy metals present in industrial wastewater, which represents a high risk for the environment. In this work, the adsorption of Pb+2 and Cd+2 was performed using the cocoa shell as adsorbent in columns, and the dynamic simulation of the process using the Aspen Adsorption® V10 software, in order to validate the simulation results and those obtained experimentally. The simulator and experimental rupture curves converge in almost the entire trajectory, with slight variations in the final stretch of the curve, with the rupture times coinciding for both metals, giving correlation coefficients (R2) of 0.984 and 0.998 for Pb+2 and Cd+2 respectively, as well as error values (SSE) less than 5%. The effect produced by the variation of the height of the bed and the flow rate in the rupture curves was analyzed, as the bed height increases and the flow rate decreases, the rupture time increases, favoring the adsorption of both metals. The results of this research show the importance of the use of Aspen Adsorption® software in the biosorption process, due to the similarity with experimental results, providing its use saving time and resources.
  • Publication
    Evaluación del poder biosorbente de la hoja de maíz en la remoción de metales pesados
    (2020) Astudillo Ochoa, Sonia Margoth; Castro Nube, Cecilia; Astudillo Zuñiga, Jorge Israel; Vera Cabezas, Luisa Mayra
  • Publication
    Cinética de fermentación láctica de col blanca (Brassica olerácea L. capitata)
    (2020) Zúñiga García, Daniela Estefanía; Montaleza Auquilla, María Magdalena; Andrade Muñoz, Diana Jésus; León Vizñay, Jéssica Andrea; Ramírez Jimbo, Patricia Liliana; Criollo Ayala, Diana Alexandra; Astudillo Ochoa, Sonia Margoth; Loja, María; Andrade Tenesaca, Dolores Susana
    This study examined the chemical kinetics of natural lactic fermentation of white cabbage (Brassica olerácea L.- capitata var.). First, the experimental design was developed and the optimal conditions (temperature, fermentation time and sea salt concentration) for the growth of lactic bacteria were defined. The optimal corresponds to a temperature of 25°C, a duration of 14 days and a sea salt content of 3%. The experiment was replicated in eleven bottles and the pH, the concentration of glucose, fructose, and lactic acid bacteria were determined. Second, the integral method was used to define the kinetics of the chemical reaction. For glucose, zero-order kinetics was set with a kinetic constant of 2x10-6 g/ml.min (correlation coefficient = 0.98), and showed that the reaction rate was independent of the glucose concentration. Regarding the fructose, the second-order kinetics was set with a constant of 1.45x10-2 ml/g.min (correlation coefficient = 0.98). The equation −𝑟𝑐6𝐻12𝑂6 = [ 0.0145 (C𝑐6𝐻12𝑂6) 2 ] g/ml.min represents the speed of sugar consumption in a natural lactic fermentation reaction of white cabbage. The modeling approach will help the fermenter to improve the fermenting design and enhance the production process.