Browsing by Author "Windhorst, David"
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Publication A field, laboratory, and literature review evaluation of the water retention curve of volcanic ash soils: How well do standard laboratory methods reflect field conditions?(2021) Jan, Feyen; Marin Molina, Franklin Geovanny; Mosquera Rojas, Giovanny Mauricio; Crespo Sánchez, Patricio Javier; Windhorst, David; Lutz, Breuer; Célleri Alvear, Rolando EnriqueAccurate determination of the water retention curve (WRC) of a soil is essential for the understanding and modelling of the subsurface hydrological, ecological, and biogeochemical processes. Volcanic ash soils with andic properties (Andosols) are recognized as important providers of ecological and hydrological services in mountainous regions worldwide due to their large fraction of small size particles (clay, silt, and organic matter) that gives them an outstanding water holding capacity. Previous comparative analyses of in situ (field) and standard laboratory methods for the determination of the WRC of Andosols showed contrasting results. Based on an extensive analysis of laboratory, experimental, and field measured WRCs of Andosols in combination with data extracted from the published literature we show that standard laboratory methods using small soil sample volumes (?300 cm3) mimic the WRC of these soils only partially. The results obtained by the latter resemble only a small portion of the wet range of the Andosols' WRC (from saturation up to ?5 kPa, or pF 1.7), but overestimate substantially their water content for higher matric potentials. This discrepancy occurs irrespective of site-specific land use and cover, soil properties, and applied method. The disagreement limits our capacity to infer correctly subsurface hydrological behaviour, as illustrated through the analysis of long-term soil moisture and matric potential data from an experimental site in the tropical Andes. These findings imply that results reported in past research should be used with caution and that future research should focus on determining laboratory methods that allow obtaining a correct characterization of the WRC of Andosols. For the latter, a set of recommendations and future directions to solve the identified methodological issues is proposed.Item Addressing sources of uncertainty in runoff projections for a data scarce catchment in the Ecuadorian Andes(2014) Exbrayat, Jean Francois; Buytaert, Wouter; Timbe Castro, Edison Patricio; Windhorst, David; Breuer, LutzFuture climate projections from general circulation models (GCMs) predict an acceleration of the global hydrological cycle throughout the 21st century in response to human-induced rise in temperatures. However, projections of GCMs are too coarse in resolution to be used in local studies of climate change impacts. To cope with this problem, downscaling methods have been developed that transform climate projections into high resolution datasets to drive impact models such as rainfall-runoff models. Generally, the range of changes simulated by different GCMs is considered to be the major source of variability in the results of such studies. However, the cascade of uncertainty in runoff projections is further elongated by differences between impact models, especially where robust calibration is hampered by the scarcity of data. Here, we address the relative importance of these different sources of uncertainty in a poorly monitored headwater catchment of the Ecuadorian Andes. Therefore, we force 7 hydrological models with downscaled outputs of 8 GCMs driven by the A1B and A2 emission scenarios over the 21st century. Results indicate a likely increase in annual runoff by 2100 with a large variability between the different combinations of a climate model with a hydrological model. Differences between GCM projections introduce a gradually increasing relative uncertainty throughout the 21st century. Meanwhile, structural differences between applied hydrological models still contribute to a third of the total uncertainty in late 21st century runoff projections and differences between the two emission scenarios are marginal.Item Effect of land cover and hydro-meteorological controls on soil water doc concentrations in a high-elevation tropical environment(2018) Pesántez Vallejo, Juan Patricio; Mosquera, Giovanny; Crespo Sánchez, Patricio Javier; Breuer, Lutz; Windhorst, DavidPáramo soils store high amounts of organic carbon. However, the effects of climate change and changes in land cover and use (LC/LU) in this high-elevation tropical ecosystem may cause a decrease in their carbon storage capacity. Therefore, better understanding of the factors influencing the Páramo soils' carbon storage and export is urgently needed. To fill this knowledge gap, we investigated the differences in dissolved organic carbon (DOC) content in the soil water of four LC/LU types (tussock grass, natural forest, pine plantations, and pasture) and the factors controlling its variability in the Quinuas Ecohydrological Observatory in south Ecuador. Weekly measurements of soil water DOC concentrations, meteorological variables, soil water content, and temperature from various depths and slope positions were monitored within the soils' organic and mineral horizons between October 2014 and January 2017. These data were used to generate regression trees and random forest statistical models to identify the factors controlling soil water DOC concentrations. From high to low concentrations, natural forest depict the highest DOC concentrations followed by pasture, tussock grass, and pine forest. For all LC/LU types, DOC concentrations increase with decreasing soil moisture. Our results also show that LC/LU is the most important predictor of soil water DOC concentrations, followed by sampling depth and soil moisture. Interestingly, atmospheric variables and antecedent evapotranspiration and precipitation conditions show only little influence on DOC concentrations during the monitoring period. Our findings provide unique information that can help improve the management of soil and water resources in the Páramo and other peat dominated ecosystems elsewhere. © 2018 John Wiley & Sons, Ltd.Item Effect of land cover and hydro-meteorological controls on soil water leachate doc concentrations in a high-elevation tropical environment(2018-01-08) Pesántez Vallejo, Juan Patricio; Windhorst, David; Mosquera Rojas, Giovanny Mauricio; Crespo Sánchez, Patricio JavierPáramo soils store high amounts of organic carbon. However, climate change and changes in land cover/use may cause a decrease in their carbon storage capacity. As such, a better understanding of the factors influencing the páramo soils carbon storage and export is urgently needed. To fill this knowledge gap we selected the Quinuas Ecohydrological Observatory (91.3 km²) in south Ecuador, and study the hydro-meteorological conditions controlling the dissolved organic carbon (DOC) content in the soil water for the four main land cover types (tussock grass, natural forest, pine plantations and pasture). Weekly soil water samples for DOC analysis, as well as meteorological variables and soil water content and temperature probes (5-min intervals) from various depth and slope positions were monitored within the soils’ organic and mineral horizons between October 2014 and January 2017. These data was used to generate regression trees and random forest statistical models in order to identify controllers of soil water DOC concentrations. Our results evidenced that land cover is the most important predictor in the models, followed by sampling depth and soil moisture. Natural forest have been identified with the higher DOC concentrations in soil water followed by pasture, tussock grass and pine forest. DOC concentrations also increase with decreasing soil moisture (except when soil moisture is >0.56 m³ m-³ in natural forest). The latter shows that land cover change and factors that affect soil moisture conditions over time, are very likely to lead significant changes in DOC concentrations in soil water and therefore in streams.Item Global climate change impacts on local climate and hydrology(Springer, Berlin, Heidelberg, 2013) Timbe Castro, Edison PatricioGlobal climate change will most likely have a severe impact on local climate and hydrological cycling in the tropical montane rainforest. We used a simple statistical downscaling technique for eight general circulation models and two IPCC AR4 emission scenarios (A1B, A2) to forecast feasible local climate conditions for the San Francisco river basin for three future time slices (2010–2039, 2040–2069, 2070–2099). These simulations were then used as forcing data for an ensemble of seven catchment scale rainfall-runoff models to investigate the effects on local hydrological fluxes. Precipitation for both emission scenarios is expected to increase, especially in the months May and June. These increases in precipitation input will lead to even more dynamic discharges as today. However, part of the increasing water input is compensated by raising evapotranspiration due to higher temperatures. Finally, we give an outlook on feasible future trends of water-related ecosystem services under climate change.Item Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest(2013) Windhorst, David; Waltz, T.; Timbe Castro, Edison Patricio; Frede, H. G.; Breuer, LutzThis study presents the spatial and temporal variability of δ18O and δ2H isotope signatures in precipitation of a south Ecuadorian montane cloud forest catchment (San Francisco catchment). From 2 September to 25 December 2010, event sampling of open rainfall was conducted along an altitudinal transect (1800 to 2800 m a.s.l.) to investigate possible effects of altitude and weather conditions on the isotope signature. The spatial variability is mainly affected by the altitude effect. The event based δ18O altitude effect for the study area averages −0.22‰ × 100 m−1 (δ2H: −1.12‰ × 100 m−1). The temporal variability is mostly controlled by prevailing air masses. Precipitation during the times of prevailing southeasterly trade winds is significantly enriched in heavy isotopes compared to precipitation during other weather conditions. In the study area, weather during austral winter is commonly controlled by southeasterly trade winds. Since the Amazon Basin contributes large amounts of recycled moisture to these air masses, trade wind-related precipitation is enriched in heavy isotopes. We used deuterium excess to further evaluate the contribution of recycled moisture to precipitation. Analogously to the δ18O and δ2H values, deuterium excess is significantly higher in trade wind-related precipitation. Consequently, it is assumed that evaporated moisture is responsible for high concentrations of heavy isotopes during austral winter.Item Model intercomparison to explore catchment functioning: results from a remote montane tropical rainforest(2012-07-24) Plesca, I.; Timbe, Edison; Exbrayat, J. F.; Windhorst, David; Kraft, P.; Crespo, P.; Vaché, Kellie B.; Frede, Hans Georg; Breuer, LutzCatchment-scale runoff generation involves a complex interaction of physical and chemical processes operating over a wide distribution of spatial and temporal scales. Understanding runoff generation is challenged by this inherent complexity – the more uncertain step of predicting the hydrologic response of catchments is that much more challenging. Many different hypotheses have been implemented in hydrological models to capture runoff generation processes and provide hydrologic predictions. These concepts have been developed based on extended field observations. Here we propose inferring water flux understanding and catchment exploring through the application of a variety of available hydrological models as a mechanism to build upon and extend models that have been developed to capture particular hydrological processes. We view this ensemble modeling strategy as particularly appropriate in ungauged catchments. The study is carried out in a tropical montane rainforest catchment in Southern Ecuador. The catchment is 75 km2 and is covered by forest in the south, while the northern slopes have been partly deforested for grazing. Annual rainfall is highly variable, reaching up to 5700 mm per year in the upper parts of the catchment. To explore the dominating runoff processes, an ensemble of 6 hydrological models with different structures applied over different levels of both spatial and temporal detail was developed. The ensemble includes spatially lumped (HBV-light), semi-distributed (HEC-HMS, CHIMP, SWAT, LASCAM) and a fully distributed model (HBV-N-D). The hydro-statistical toolkit WETSPRO was used to characterize simulated and observed hydrographs. Estimated baseflow indices, flow minima and maxima, flow duration curves and cumulative errors were generated and compared among the ensemble of models. This process facilitated the exploration of processes controlling runoff generation, enabled an evaluation of the applicability of the screened models to tropical montane rainforests, and provided the capacity to evaluate and explain where different models failed.Item Model intercomparison to explore catchment functioning: results from a remote montane tropical rainforest(2012) Plesca, Ina; Timbe Castro, Edison Patricio; Exbrayat, Jean Francois; Windhorst, David; Kraft, Philipp; Crespo Sánchez, Patricio Javier; Vaché, K. B.; Frede, Hans Georg; Breuer, LutzCatchment-scale runoff generation involves a complex interaction of physical and chemical processes operating over a wide distribution of spatial and temporal scales. Understanding runoff generation is challenged by this inherent complexity – the more uncertain step of predicting the hydrologic response of catchments is that much more challenging. Many different hypotheses have been implemented in hydrological models to capture runoff generation processes and provide hydrologic predictions. These concepts have been developed based on extended field observations. Here we propose inferring water flux understanding and catchment exploring through the application of a variety of available hydrological models as a mechanism to build upon and extend models that have been developed to capture particular hydrological processes. We view this ensemble modeling strategy as particularly appropriate in ungauged catchments. The study is carried out in a tropical montane rainforest catchment in Southern Ecuador. The catchment is 75 km2 and is covered by forest in the south, while the northern slopes have been partly deforested for grazing. Annual rainfall is highly variable, reaching up to 5700 mm per year in the upper parts of the catchment. To explore the dominating runoff processes, an ensemble of 6 hydrological models with different structures applied over different levels of both spatial and temporal detail was developed. The ensemble includes spatially lumped (HBV-light), semi-distributed (HEC-HMS, CHIMP, SWAT, LASCAM) and a fully distributed model (HBV-N-D). The hydro-statistical toolkit WETSPRO was used to characterize simulated and observed hydrographs. Estimated baseflow indices, flow minima and maxima, flow duration curves and cumulative errors were generated and compared among the ensemble of models. This process facilitated the exploration of processes controlling runoff generation, enabled an evaluation of the applicability of the screened models to tropical montane rainforests, and provided the capacity to evaluate and explain where different models failed.Item Moisture transport and seasonal variations in the stable isotopic composition of rainfall in Central American and Andean Páramo during El Niño conditions (2015-2016)(2019) Esquivel Hernández, Germain; Mosquera Rojas, Giovanny Mauricio; Sánchez Murillo, Ricardo; Quesada Román, Adolfo; Birkel, Christian; Crespo Sánchez, Patricio Javier; Célleri Alvear, Rolando Enrique; Windhorst, David; Breuer, Lutz; Boll, JanHigh‐elevation tropical grassland systems, called Páramo, provide essential ecosystem services such as water storage and supply for surrounding and lowland areas. Páramo systems are threatened by climate and land use changes. Rainfall generation processes and moisture transport pathways influencing precipitation in the Páramo are poorly understood but needed to estimate the impact of these changes, particularly during El Niño conditions which largely affect hydrometeorological conditions in tropical regions. To fill this knowledge gap, we present a stable isotope analysis of rainfall samples collected on a daily to weekly basis between January 2015 and May 2016 during the strongest El Niño event recorded in history (2014‐2016) in two Páramo regions of Central America (Chirripó, Costa Rica) and the northern Andes (Cajas, south Ecuador). Isotopic compositions were used to identify how rainfall …Item Multicriteria assessment of water dynamics reveals subcatchment variability in a seemingly homogeneous tropical cloud forest catchment(2017) Timbe Castro, Edison Patricio; Feyen, Jan; Timbe Castro, Luis Manuel; Crespo Sánchez, Patricio Javier; Célleri Alvear, Rolando Enrique; Windhorst, David; Frede, Hans Georg; Breuer, LutzTo improve the current knowledge of the rainfall–runoff phenomena of tropical montane catchments, we explored the usefulness of several hydrological indicators on a nested cloud forest catchment (76.9 km2). The used metrics belong to 5 categories: baseflow mean transit time, physicochemical properties of stream water, land cover, topographic, and hydrometric parameters. We applied diverse statistical techniques for data analysis and to contrast findings. Multiple regression analysis showed that mean transit times of base flow could be efficiently predicted by sodium concentrations (higher during baseflows) and temperatures of stream water, indicating a major influence of geomorphology rather than topographic or land cover characteristics. Principal component analysis revealed that no specific subset of catchment indicators could be identified as prevailing descriptors for all catchments. The agglomerative hierarchical clustering analysis provided concomitant results, implying larger levels of dissimilarity between smaller subcatchments than between larger ones. Overall, results point out an intricate interdependence of diverse processes at surface and subsurface level indicating a high level of heterogeneity. Disregarding heterogeneity of nested or paired catchments could lead to incomplete or misleading conclusions, especially in tropical mountain regions where pronounced spatial and temporal gradients are present.Item Sampling frequency trade-offs in the assessment of mean transit times of tropical montane catchment waters under semi-steady-state conditions(2015) Timbe Castro, Edison Patricio; Windhorst, David; Célleri Alvear, Rolando Enrique; Timbe Castro, Luis Manuel; Crespo Sánchez, Patricio Javier; Frede, Hans Georg; Feyen, Jan; Breuer, LutzPrecipitation event samples and weekly based water samples from streams and soils were collected in a tropical montane cloud forest catchment for 2 years and analyzed for stable water isotopes in order to understand the effect of sampling frequency in the performance of three lumped-parameter distribution functions (exponential-piston flow, linear-piston flow and gamma) which were used to estimate mean transit times of waters. Precipitation data, used as input function for the models, were aggregated to daily, weekly, bi-weekly, monthly and bi-monthly sampling resolutions, while analyzed frequencies for outflows went from weekly to bi-monthly. By using different scenarios involving diverse sampling frequencies, this study reveals that the effect of lowering the sampling frequency depends on the water type. For soil waters, with transit times on the order of few weeks, there was a clear trend of over predictions. In contrast, the trend for stream waters, which have a more damped isotopic signal and mean transit times on the order of 2 to 4 years, was less clear and showed a dependence on the type of model used. The trade-off to coarse data resolutions could potentially lead to misleading conclusions on how water actually moves through the catchment, notwithstanding that these predictions could reach better fitting efficiencies, fewer uncertainties, errors and biases. For both water types an optimal sampling frequency seems to be 1 or at most 2 weeks. The results of our analyses provide information for the planning of future fieldwork in similar Andean or other catchments.Item Spatially distributed hydro-chemical data with temporally high-resolution is needed to adequately assess the hydrological functioning of headwater catchments(2019) Correa Barahona, Alicia Beatriz; Breuer, Lutz; Crespo Sánchez, Patricio Javier; Célleri Alvear, Rolando Enrique; Feyen, Jan; Birkel, Christian; Silva Alemán, Camila Fernanda; Windhorst, DavidAbstract We demonstrated the great value of spatially distributed and temporally high-resolution hydro-chemical data to enhance knowledge about the intra-catchment variability of flow processes and the runoff composition of individual storms in a tropical alpine (Paramo) ecosystem. In this study, water sources (rainfall, spring water, and water from soil layers of Histosols and Andosols) and nested streams were sampled bi-weekly (2013–2014), including three storm high-resolution events (5–240 min). Water samples were analyzed for 14 tracers including electrical conductivity (EC) and rare earth trace elements and used as input to perform End-Member Mixing Analysis (EMMA). End-members identified for the outlet could explain the hydrological behavior of four out of the five tributaries, indicating similar hydro-geochemical processes and geomorphic features within the catchments. The runoff source contributions of the individual sub-catchments varied among (e.g. Andosols ~40% in tributaries and ~25% at the outlet) and within storm events (e.g. Histosols 15% higher in small peak discharge event), indicating a time-variable composition of streamflows. The latter was also reflected by the interaction of different sources and the chronology of flow paths in EMMA-space, evidencing a faster connectivity with hillslopes in the upper sub-catchments compared to the lower sub-catchments. We found counter-clockwise hysteresis patterns of storms in the lower catchments and clockwise hysteresis loops in the upper catchments. The latter bi-directionality can be related to lower slopes, wider riparian areas and the higher proportion of Histosols in the lower catchments compared to the upper sites.Item Stable water isotope tracing through hydrological models for disentangling runoff generation processes at the hillslope scale(2014) Windhorst, David; Timbe Castro, Edison Patricio; Kraft, Philipp; Frede, Hans Georg; Breuer, LutzHillslopes are the dominant landscape components where incoming precipitation becomes groundwater, streamflow or atmospheric water vapor. However, directly observing flux partitioning in the soil is almost impossible. Hydrological hillslope models are therefore being used to investigate the processes involved. Here we report on a modeling experiment using the Catchment Modeling Framework (CMF) where measured stable water isotopes in vertical soil profiles along a tropical mountainous grassland hillslope transect are traced through the model to resolve potential mixing processes. CMF simulates advective transport of stable water isotopes 18O and 2H based on the Richards equation within a fully distributed 2-D representation of the hillslope. The model successfully replicates the observed temporal pattern of soil water isotope profiles (R2 0.84 and Nash–Sutcliffe efficiency (NSE) 0.42). Predicted flows are in good agreement with previous studies. We highlight the importance of groundwater recharge and shallow lateral subsurface flow, accounting for 50 and 16% of the total flow leaving the system, respectively. Surface runoff is negligible despite the steep slopes in the Ecuadorian study region.Item Understanding uncertainties when inferring mean transit times of water trough tracer-based lumped-parameter models in Andean tropical montane cloud forest catchments(2014) Timbe Castro, Edison Patricio; Crespo Sánchez, Patricio Javier; Feyen, Jan; Windhorst, David; Frede, Ha G.; Breuer, LarsWeekly samples from surface waters, springs, soil water and rainfall were collected in a 76.9 km2 mountain rain forest catchment and its tributaries in southern Ecuador. Time series of the stable water isotopes δ18O and δ2H were used to calculate mean transit times (MTTs) and the transit time distribution functions (TTDs) solving the convolution method for seven lumped-parameter models. For each model setup, the generalized likelihood uncertainty estimation (GLUE) methodology was applied to find the best predictions, behavioral solutions and parameter identifiability. For the study basin, TTDs based on model types such as the linear–piston flow for soil waters and the exponential–piston flow for surface waters and springs performed better than more versatile equations such as the gamma and the two parallel linear reservoirs. Notwithstanding both approaches yielded a better goodness of fit for most sites, but with considerable larger uncertainty shown by GLUE. Among the tested models, corresponding results were obtained for soil waters with short MTTs (ranging from 2 to 9 weeks). For waters with longer MTTs differences were found, suggesting that for those cases the MTT should be based at least on an intercomparison of several models. Under dominant baseflow conditions long MTTs for stream water ≥ 2 yr were detected, a phenomenon also observed for shallow springs. Short MTTs for water in the top soil layer indicate a rapid exchange of surface waters with deeper soil horizons. Differences in travel times between soils suggest that there is evidence of a land use effect on flow generation.Item Water transport and tracer mixing in volcanic ash soils at a tropical hillslope: A wet layered sloping sponge(2020) Mosquera Rojas, Giovanny Mauricio; Crespo Sánchez, Patricio Javier; Breuer, Lutz; Feyen Null, Jan Jozef albert; Windhorst, DavidAndosol soils formed in volcanic ash provide key hydrological services in montane environments. To unravel the subsurface water transport and tracer mixing in these soils we conducted a detailed characterization of soil properties and analyzed a 3-year data set of sub-hourly hydrometric and weekly stable isotope data collected at three locations along a steep hillslope. A weakly developed (52–61 cm depth), highly organic andic (Ah) horizon overlaying a mineral (C) horizon was identified, both showing relatively similar properties and subsurface flow dynamics along the hillslope. Soil moisture observations in the Ah horizon showed a fast responding (few hours) “rooted” layer to a depth of 15 cm, overlying a “perched” layer that remained near saturated year-round. The formation of the latter results from the high organic matter (33–42%) and clay (29–31%) content of the Ah horizon and an abrupt hydraulic conductivity reduction in this layer with respect to the rooted layer above. Isotopic signatures revealed that water resides within this soil horizon for short periods, both at the rooted (2 weeks) and perched (4 weeks) layer. A fast soil moisture reaction during rainfall events was also observed in the C horizon, with response times similar to those in the rooted layer. These results indicate that despite the perched layer, which helps sustain the water storage of the soil, a fast vertical mobilization of water through the entire soil profile occurs during rainfall events. The latter being the result of the fast transmissivity of hydraulic potentials through the porous matrix of the Andosols, as evidenced by the exponential shape of the water retention curves of the subsequent horizons. These findings demonstrate that the hydrological behavior of volcanic ash soils resembles that of a “layered sponge,” in which vertical flow paths dominate.
