Gross Primary Productivity estimation through remote sensing and machine learning techniques in the high Andean Region of Ecuador

dc.contributor.advisorCarrillo Rojas, Galo José
dc.contributor.authorUrgilés Ávila, Cindy Carolina
dc.date2028-12-20
dc.date.accessioned2024-01-02T19:45:27Z
dc.date.available2028-12-21
dc.date.available2024-01-02T19:45:27Z
dc.date.issued2024-01-02
dc.descriptionLa estimación precisa de Productividad Primaria Bruta (GPP) es una herramienta valiosa para simular el ciclo del carbono y, por tanto, desempeña un papel importante para abordar los retos que plantea el cambio climático. Sin embargo, estimar GPP es un gran reto, debido a la falta de mediciones directas. En este estudio, GPP se estimó utilizando modelos de aprendizaje automático (ML), como Bosque Aleatorio (RF) y Vectores de Soporte Regresión (SVR), en páramo. Complejas relaciones no lineales que dominan GPP son de fundamental importancia para llevar a cabo un análisis de incertidumbre para futuras proyecciones climáticas. Este estudio evaluó la relación entre variables biometeorológicas, datos de teledetección y estimación GPP. La metodología utilizada para estimar la GPP confirmó que los modelos basados en ML obtuvieron mejores resultados que los modelos tradicionales. El rendimiento de los modelos ML varió significativamente entre estaciones, con R que osciló entre 0,24 y 0,86. El modelo RF se comportó mejor al capturar los cambios temporales y la magnitud de la GPP en la estación menos húmeda, mostrando la R más alta (0,86), el RMSE más bajo (0,37 g C/m2) y el PBIAS más bajo (-3 %). Además, la importancia de las variables mostró que la radiación solar fue el predictor más significativo del GPP. Esto sugiere que la producción en el bioma Páramo no está limitada por el agua, sino por la cantidad de radiación solar incidente. El estudio proporcionó un enfoque para derivar flujos diarios de GPP durante un periodo de estudio de 2 años.en_US
dc.description.abstractAccurate estimations of Gross Primary Productivity (GPP) are a valuable tool for simulating the carbon cycle and therefore play a significant role in addressing the challenges posed by climate change. However, the estimation of GPP is a large challenge, owing to the lack of direct. In this study, GPP was estimated using machine learning models (ML), such as Random Forest (RF) and Support Vector Regression (SVR), in páramo. The strength and complex nonlinear relationships that dominate the GPP are fundamentally important to conduct an uncertainty analysis for future climate projections. This study evaluated the relationship between biometeorological variables, remote sensing data and GPP estimation. The methodology used to estimate GPP confirmed that ML-based models performed better than traditional models. The performance of ML models varied significantly among seasons, with R ranging from 0.24-0.86. The RF model performed better in capturing the temporal changes and magnitude of GPP in less humid season, displaying the highest R (0.86), lowest RMSE (0.37 g C/m2), and lowest PBIAS (-3 %). In addition, the importance of the variables showed that solar radiation was the most significant predictor of GPP. This suggests that production in the Páramo biome is not limited by water, but by the amount of incident solar radiation. The study provided an approach to derive daily GPP fluxes over a 2-year study period. This study has attempted to assess the impact of various variables on GPP estimates. It can be used to further the development of vegetation prediction modelsen_US
dc.description.uri0000-0003-4410-6926en_US
dc.formatapplication/pdfen_US
dc.format.extent33 páginasen_US
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/43523
dc.language.isoengen_US
dc.publisherUniversidad de Cuencaen_US
dc.relation.ispartofTM4;2144
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopenAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectIngeniería Civilen_US
dc.subjectVariables biometeorológicasen_US
dc.subjectBioma páramoen_US
dc.subjectBosque aleatorioen_US
dc.subject.otherCIUC::Ciencias de la Tierra::Meteorología::Predicción Operacional Meteorológicaen_US
dc.titleGross Primary Productivity estimation through remote sensing and machine learning techniques in the high Andean Region of Ecuadoren_US
dc.typesubmittedVersionen_US
dcterms.descriptionMagíster en Hidrología mención en Ecohidrologíaen_US
dcterms.spatialCuenca, Ecuadoren_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Trabajo-de-Titulación.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format
Description:
Acceso restringido (versión presentada)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: