Browsing by Author "Teran Zavala, Maria Del carmen"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Assessing the stability of historical and desiccated snake venoms from a medically important ecuadorian collection(2020) De Almeida, José Rafael; Mendes, Bruno; Palma Patiño, Ricardo Sebastian; Pico Zerna, Jose Manuel; Laines Aguilar, Johanna Rosaly; Teran Zavala, Maria Del carmen; Salazar Mogollón, Noroska Gabriela; Zaruma Torres, Fausto Leonardo; Da Silva, Saulo Luis; Alves da Silva Caldeira, CleópatraBothrops asper and Bothrops atrox are important venomous snakes from Ecuador responsible for the most of ophidic accidents, which in the past were treated with a national polyvant antivenom. For years, the venom pools were collected and stored at room temperature in a laboratory. Taking into account the controversial ability of desiccated samples to retain their biological effects and enzymatic activities, we investigated the biochemical and toxicological properties of venoms after years of storage. The proteomic profiles of historical venoms analyzed by high-performance liquid chromatography and electrophoresis are very similar. The fresh batches of venom were more lethal than those stored for years, just as the initial and current LD50 values of these samples changed. Significant differences were showed in the myotoxic and hemorrhagic activity of some venom pools, while no significant statistical differences were found for the edema activity. The enzymatic assays revealed a variation in proteolytic activity on azocasein and phospholipase A2 activity, and low differences were reported for thrombin-like serine protease activity. The maintenance of the proteomic profile and certain toxicological activities convert this venom library in a valuable source for research purposes. Nonetheless, the significative reduction of toxicological activities, such as hemorrhagic activity not feasible using these samples for the antivenom production.Publication Corrigendum to: “venomics of the poorly studied hognosed pitvipers porthidium arcosae and porthidium volcanicum”(2019) Ruiz Campos, Marco; Sanz, Libia; Bonilla Murillo, Fabián; Mahmood M., Sasa; Lomonte Vigliotti, Bruno; Zaruma Torres, Fausto Leonardo; Teran Zavala, Maria Del carmen; Fernandez Ulate, Julian; Calvete Chornet, Juan José; Caldeira, Cleópatra Alves da Silva; Da Silva, Saulo LuisWe report the first proteomics analyses of the venoms of two poorly studied snakes, the Manabi hognosed pitviper Porthidium arcosae endemic to the western coastal province of Manabí (Ecuador), and the Costa Rican hognosed pitviper P. volcanicum with distribution restricted to South Pacific Costa Rica and western Panamá. These venom proteomes share a conserved compositional pattern reported in four other congeneric species within the clade of South American Porthidium species, P. nasutum, P. lansbergii, P. ophryomegas, and P. porrasi. The paraspecific immunorecognition profile of antivenoms produced in Costa Rica (ICP polyvalent), Perú (Instituto Nacional de Salud) and Brazil (soro antibotrópico pentavalente, SAB, from Instituto Butantan) against the venom of P. arcosae was investigated through a third-generation antivenomics approach. The maximal venom-binding capacities of the investigated antivenoms were 97.1 mg, 21.8 mg, and 25.7 mg of P. arcosae venom proteins per gram of SAB, ICP, and INS-PERU antibody molecules, respectively, which translate into 28.4 mg, 13.1 mg, and 15.2 mg of total venom proteins bound per vial of SAB, ICP, and INS-PERU AV. The antivenomics results suggest that 21.8%, 7.8% and 6.1% of the SAB, ICP, and INS-PERU antibody molecules recognized P. arcosae venom toxins. The SAB antivenom neutralized P. arcosae venom's lethality in mice with an ED50 of 31.3 mgV/g SAB AV. This preclinical neutralization paraspecificity points to Brazilian SAB as a promising candidate for the treatment of envenomings by Ecuadorian P. arcosae. BIOLOGICAL SIGNIFICANCE: Assessing the preclinical efficacy profile of antivenoms against homologous and heterologous medically relevant snake venoms represents an important goal towards defining the biogeographic range of their clinical utility. This is particularly relevant in regions, such as Mesoamerica, where a small number of pharmaceutical companies produce antivenoms against the venoms of a small number of species of maximum medical relevance among the local rich herpetofauna, leaving a wide range of snakes of secondary medical relevance, but also causing life-threatening human envenomings without nominal clinical coverage. This work is part of a larger project aiming at mapping the immunological characteristics of antivenoms generated in Latin American countries towards venoms of such poorly studied snakes of the local and neighboring countries' herpetofauna. Here we report the proteomics characterization of the Manabi hognosed pitviper Porthidium arcosae endemic to the western coastal province of Manabí (Ecuador), and the Costa Rican hognosed pitviper P. volcanicum with distribution restricted to southwestern Costa Rica, the antivenomics assessment of three bothropoid commercial antivenoms produced in Costa Rica, Perú, and Brazil against the venom components of P. arcosae, and the in vivo capacity of the Brazilian soro antibotrópico pentavalente (SAB) from Instituto Butantan to neutralize the murine lethality of P. arcosae venom. The preclinical paraspecific ED50 of 31.3 mg of P. arcosae venom per gram of antivenom points to Brazilian SAB as a promising candidate for the treatment of envenomings by the Manabi hognosed pitviper P. arcosae.
