Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Quichimbo, A."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Aplicabilidad de los modelos NAM y DBM para estimar caudales en subcuencas alto andinas de Ecuador
    (Universidad de Cuenca, 2013-12) Quichimbo, A.; Vázquez, R. F.; Samaniego Alvarado, Esteban Patricio; Universidad de Cuenca; Dirección de Investigación de la Universidad de Cuenca
    A Data-Based Mechanistic (DBM) model and the Nedbor-Afstromnings Model (NAM) were applied to simulate the rainfall-runoff relationship of two Andean basins, different in size, located in southern Ecuador. This article provides a comparative analysis of both modeling approaches, with emphasis on the evaluation of the model performance. The study revealed that the DBM model better mimics the rainfall-runoff system than the NAM model representing the river basin by a structure composed of three linear reservoirs.
  • Loading...
    Thumbnail Image
    Item
    Predicción de caudales en la cabecera de la cuenca del Paute mediante el modelo DBM
    (Universidad de Cuenca, 2014) Quichimbo, A.; Vázquez, R. F.; Universidad de Cuenca; Dirección de Investigación de la Universidad de Cuenca; DIUC
    The Data-Based Mechanistic (DBM) model was used in conjunction with the Kalman filter (as a data assimilation technique), to predict the discharge from a sub-catchment located in the upper part of the Paute basin. The results showed that this conjunctive use of the DBM model and the Kalman filter produced better predictions of the discharge in the study site, as compared to the solely use of the DBM model; indeed, the use of the Kalman filter provided an estimate of the uncertainty associated to the use of the DBM model for forecasting purposes. These results not only motivate the future use of data mining techniques for discharge forecasting, but also encourage the use of the current tool for both, prediction as well as forecasting extreme events on Andean catchments.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback