Browsing by Author "Ochoa Tocachi, Boris Fernando"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Progress in understanding the hydrology of high-elevation andean grasslands under changing land use(2022) Mosquera Rojas, Giovanny Mauricio; Crespo Sánchez, Patricio Javier; Román Dañobeytia, Francisco; Ochoa Tocachi, Boris Fernando; Bonnesoeur, Vivien; Stern, Margaret; Marín Molina, Franklin GeovannyHigh-elevation grasslands worldwide provide essential hydrological services including water provision, flow regulation, and erosion control. Despite their importance, hydrological research of grasslands in montane regions is usually scarce and disperse, limiting the capacity to improve water resource management. We present a systematic literature review of the hydrological function of high Andean grasslands under conserved, degraded, and restored conditions in ecosystems situated above the tree line in the tropical Andes (paramos, punas, and jalcas). Most hydrological research on these grasslands has been developed in paramos (92%), especially in Ecuador, while research in punas is scarce (6%) despite being the largest grassland extent in the region. For paramos, published literature highlights the importance of conserving grasslands to facilitate water infiltration to soils, which in turn reduces erosive processes. Water-vegetation relations for conserved paramos are well understood, indicating that about 50% of water inputs return to the atmosphere via evapotranspiration, but knowledge about hydrological functions of conserved punas and jalcas is virtually non-existent. Under changing land use, afforestation of grassland ecosystems with exotic tree species, especially pines, reduces soil water storage as well as water yield and flow regulation capacity. Impacts of grazing and agriculture on the hydrological function of paramo grasslands strongly depend on historical land management and current land use practices and are not generalizable. Short-term restoration studies indicate that more than two years are necessary to recover the hydrological function of degraded grasslands, therefore medium and long-term studies are required to determine efficient restoration periods. These knowledge gaps limit the ability to extrapolate and regionalize findings. Future directions aimed to fill them are proposed, and methods successfully used to investigate the hydrology of high Andean grasslands are highlighted. This research not only enlightens what is known about the hydrology of high Andean grasslands, but also seeks to guide future hydrological evaluations to fill identified geographical and topical knowledge gaps precluding improved management of water resources in the tropical Andes. (c) 2021 Elsevier B.V. All rights reserved.Item The effect of natural infrastructure on water erosion mitigation in the Andes(2022) Ochoa Tocachi, Boris FernandoSoil erosion by water is affecting natural and anthropogenic environments through its impacts on water quality and availability, loss of soil nutrients, flood risk, sedimentation in rivers and streams, and damage to civil infrastructure. Sustainable management aims to avoid, reduce and reverse soil erosion and can provide multiple benefits for the environment, population, and livelihoods. We conducted a systematic review of 121 case studies from the Andes to answer the following questions: (1) Which erosion indicators allow us to assess the effectiveness of natural infrastructure? (2) What is the overall impact of working with natural infrastructure on on-site and off-site erosion mitigation? and (3) Which locations and types of studies are needed to fill critical gaps in knowledge and research? Three major categories of natural infrastructure were considered: protective vegetation, soil and water conservation measures, and adaptation measures that regulate the flow and transport of water. From the suite of physical, chemical and biological indicators commonly used in soil erosion research, two indicators were particularly relevant: soil organic carbon (SOC) of topsoil, and soil loss rates at the plot scale. In areas with protective vegetation and/or soil and water conservation measures, the SOC of topsoil is –on average– 1.3 to 2.8 times higher than in areas under traditional agriculture. Soil loss rates in areas with natural infrastructure were reported to be 38 % to 54 % lower than rates measured in untreated croplands. Further research is needed to evaluate whether the reported effectiveness holds during extreme events related to, for example, El Niño–Southern Oscillation.
