Browsing by Author "Naula Duchi, Kelly Dayanna"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Simulación de la gasificación catalítica de biomasa de banano en la producción de hidrógeno; a partir de un reactor de lecho fijo, mediante ANSYS estudiantil(Universidad de Cuenca, 2022-11-22) Gaona Cumbicos, Jessica Mayli; Naula Duchi, Kelly Dayanna; Jara Cobos, Lourdes ElizabethBiomass gasification technology is of constant interest in the field of sustainable energy, being used as an alternative to traditional combustion technology, especially due to the reduction in the emission of dust and toxic gases. In gasification, hermochemical conversion of organic material, biomass, is carried out, obtaining a gaseous product of great interest known as synthesis gas. The current focus on sustainable energies is aimed at obtaining bioethanol from organic compounds that generally come from waste; however, there is a wide field of study in redirecting the course of the saccharified product to gasification to increase energy efficiencies, as well as the use of catalysts to favor the reaction rate and obtain the gas of interest. Therefore, this research’s objective was to simulate a banana biomass gasification process and system operating conditions during the process. Using Ansys students, the operating conditions of temperatures and fluid velocities were established, whose values were adopted in the simulation of the gasification reaction. In this way, an operating temperature of 604.05 °C was obtained inside the reactor at atmospheric pressure; the temperature of the gasifying agent was 226.85 °C. The mathematical model of the reaction was developed through the reaction kinetics taking as reference the kinetic study based on glucose using the Langmuir-Hinshelwood mechanism, which involves the adsorption of the reactants, catalytic surface reaction. desorption of the products of the dominant reactions: the water-gas shift reaction (WGS), the reverse dry methane reforming reaction (RDRM) and the steam methane reforming reactions (SRM), with which the model describing the evolution of the molar flux with respect to time and Zcoordinate of the main products, i.e. hydrogen (H2), methane (CH4), carbon monoxide (CO), carbon dioxide (CO2) and water (H2O), was obtained. The results of the molar flux concernig time considering 25 s of reaction were 0.16 mol/s of H2, 0.08 mol/s of CO, 0.16 mol/s of CO2, 0.12 mol/ of CH4 and 0.10 mol/s of H2O, the molar fluxes cocnerning concerning the longitudinal axis Z with a varying pressure of 2 bars, did not vary in comparison with the previous ones. The H2/CO ratio was also analyzed and showed a value of 2.2 for both casesPublication Simulation of the Catalytic Gasification of Banana Biomass in the Production of Hydrogen, Using Glucose as a Model Compound(2023) Bernal Pesantez, Edison Bolivar; Gaona Cumbicos, Jessica; Jara Cobos, Lourdes Elizabeth; Naula Duchi, Kelly Dayanna; Álvarez Lloret, Edgar Paúl; Mejia Galarza, William AndresAbstract: In the face of the climate change problem caused by fossil fuels, it is essential to seek efficient alternative energies with a lower environmental impact that are derived from renewable resources. Biomass gasification technology continues to generate significant interest in sustainable energy research as an alternative to traditional combustion technology. Gasification involves the thermochemical conversion of raw materials, resulting in a highly valuable gaseous product known as synthesis gas, commonly used as a fuel. Its numerous advantages include the availability of raw materials, the reduction in harmful emission streams, performance, and costs. As this topic gains momentum in the global energy framework, it is imperative to advance the maturity of this technology by addressing its weaknesses, primarily in terms of efficiency. The objective of this project was to investigate the hydrogen production process through the simulation of glucose gasification as a representative compound for biomass. This was achieved by conducting an integrated simulation of glucose gasification, encompassing both the heat transfer in the external system and the conversion of glucose into hydrogen gas, using the results obtained in the external system as initial conditions. Interrelated aspects of this complex process, including heat transfer and the kinetics of the gasification process, were modeled. Glucose was selected as the model compound due to its availability, simplicity, fundamental understanding, reproducibility, comparability, knowledge of reaction pathways, and simplification of mathematical models. The simulation resulted in a H2:CO ratio of 2.2, and molar fluxes were obtained for H2, CO, CO2, CH4, and H2O consistent with those typically observed in the gasification process of organic maer. These models were constructed, laying the foundation for the adaptability of subsequent optimization studies.
