Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Montenegro, Martin"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Improved rainfall prediction through nonlinear autoregressive network with exogenous variables: a case study in Andes high mountain region
    (2020) Peña Ortega, Mario Patricio; Vázquez Patiño, Angel Oswaldo; Zhiña, Dario; Montenegro, Martin; Avilés Añazco, Alex Manuel
    Precipitation is the most relevant element in the hydrological cycle and vital for the biosphere. However, when extreme pre- cipitation events occur, the consequences could be devastating for humans (droughts or floods). An accurate prediction of precipitation helps decision-makers to develop adequate mitigation plans. In this study, linear and nonlinear models with lagged predictors and the implementation of a nonlinear autoregressive model with exogenous variables (NARX) network were used to predict monthly rainfall in Labrado and Chirimachay meteorological stations. To define a suitable model, ridge regression, lasso, random forest (RF), support vector machine (SVM), and NARX network were used. Although the results were “unsatisfactory” with the linear models, the specific direct influences of variables such as Niño 1 + 2, Sahel rainfall, hurricane activity, North Pacific Oscillation, and the same delayed rainfall signal were identified. RF and SVM also demonstrated poor performance. However, RF had a better fit than linear models, and SVM has a better fit than RF models. Instead, the NARX model was trained using several architectures to identify an optimal one for the best prediction twelve months ahead. As an overall evaluation, the NARX model showed “good” results for Labrado and “satisfactory” results for Chirimachay. The predictions yielded by NARX models, for the first six months ahead, were entirely accurate. This study highlighted the strengths of NARX networks in the prediction of chaotic and nonlinear signals such as rainfall in regions that obey complex processes. The results would serve to make short-term plans and give support to decision-makers in the management of water resources.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback