Browsing by Author "Molina, A"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Impacts of forest cover change on ecosystem services in high Andean mountains(ELSEVIER, 2015-01-01) Molina, ALand conversion affects the delivery of ecosystem goods and services. In this study, we used a 50 years time series of land cover maps to assess the potential impacts of forest cover changes on ecosystem services. A multi-source data integration strategy was followed to reduce inconsistencies in land cover change detection that result from the comparison of historical aerial photographs and satellite images. Our forest cover change analysis highlighted a shift from net deforestation to net reforestation in the early 1990s, consistent with the forest transition theory. When taking the nature of forest cover changes into account, our data show that the areal increase of the forested area was not associated with an improvement in ecological conditions. The overall capacity of the landscape to deliver ecosystem services dropped steadily by 16% over the 50 years' study period. Conversion of native forests to agricultural land was associated with the strongest decline in ecosystem services. Conversion of natural grasslands into pine plantations mostly led to negative and probably irreversible impacts on the delivery of ecosystem services. Conversion of degraded agricultural lands into pine plantations led to an improvement in ecological conditions. An effective spatial targeting of forestation programs has the potential to maximize the environmental benefits that forest plantations may offer while minimizing their environmental harm. © 2014 Elsevier Ltd.Item Transient river response, captured by channel steepness and its concavity(ELSEVIER, 2015-01-01) Molina, AMountain rivers draining tropical regions are known to be great conveyor belts carrying efficiently more than half of the global sediment flux to the oceans. Many tropical mountain areas are located in tectonically active belts where the hillslope and stream channel morphology are rapidly evolving in response to changes in base level. Here, we report basin-wide denudation rates for an east-west transect through the tropical Andes. Hillslope and channel morphology vary systematically from east to west, reflecting the transition from high relief, strongly dissected topography in the escarpment zones into relatively low relief topography in the inter-Andean valley. The spatial pattern of differential denudation rates reflects the transient adjustment of the landscape to rapid river incision following tectonic uplift and river diversion. In the inter-Andean valley, upstream of the wave of incision, slopes and river channels display a relatively smooth, concave-up morphology and denudation rates (time scale of 104-105a) are consistently low (3 to 200mm/ka). In contrast, slopes and river channels of rejuvenated basins draining the eastern cordillera are steep to very steep; and the studied drainage basins show a wide range of denudation rate values (60 to 400mm/ka) that increase systematically with increasing basin mean slope gradient, channel steepness, and channel convexity. Drainage basins that are characterised by strong convexities in their river longitudinal profiles systematically have higher denudation rates. As such, this is one of the first studies that provides field-based evidence of a correlation between channel concavity and basin mean denudation rates, consistent with process-based fluvial incision models.
