Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Marin Molina, Franklin Geovanny"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    A field, laboratory, and literature review evaluation of the water retention curve of volcanic ash soils: How well do standard laboratory methods reflect field conditions?
    (2021) Jan, Feyen; Marin Molina, Franklin Geovanny; Mosquera Rojas, Giovanny Mauricio; Crespo Sánchez, Patricio Javier; Windhorst, David; Lutz, Breuer; Célleri Alvear, Rolando Enrique
    Accurate determination of the water retention curve (WRC) of a soil is essential for the understanding and modelling of the subsurface hydrological, ecological, and biogeochemical processes. Volcanic ash soils with andic properties (Andosols) are recognized as important providers of ecological and hydrological services in mountainous regions worldwide due to their large fraction of small size particles (clay, silt, and organic matter) that gives them an outstanding water holding capacity. Previous comparative analyses of in situ (field) and standard laboratory methods for the determination of the WRC of Andosols showed contrasting results. Based on an extensive analysis of laboratory, experimental, and field measured WRCs of Andosols in combination with data extracted from the published literature we show that standard laboratory methods using small soil sample volumes (?300 cm3) mimic the WRC of these soils only partially. The results obtained by the latter resemble only a small portion of the wet range of the Andosols' WRC (from saturation up to ?5 kPa, or pF 1.7), but overestimate substantially their water content for higher matric potentials. This discrepancy occurs irrespective of site-specific land use and cover, soil properties, and applied method. The disagreement limits our capacity to infer correctly subsurface hydrological behaviour, as illustrated through the analysis of long-term soil moisture and matric potential data from an experimental site in the tropical Andes. These findings imply that results reported in past research should be used with caution and that future research should focus on determining laboratory methods that allow obtaining a correct characterization of the WRC of Andosols. For the latter, a set of recommendations and future directions to solve the identified methodological issues is proposed.
  • Loading...
    Thumbnail Image
    Publication
    Effects of storage on seed germination and viability for three native tree species of Ecuador
    (2020) Palomeque Pesántez, Fanny Ximena; Patiño Uyaguari, Claudia Guicelly; Marin Molina, Franklin Geovanny; Palacios Ortiz, Mishel Andrea; Stimm, Bernd
    Many forests restoration programs and efforts depend on seeds. Particularly in the Andes, further information regarding seed germination requirements and seed storage behavior is necessary. The aim of this study was to evaluate the effects of storage conditions on the germination percentage, the viability and the coefficient of velocity of germination for seeds of three native tree species (Cedrela montana, Weinmannia fagaroides and Oreocallis grandiflora). Under controlled conditions, the seeds were exposed to three levels of seed moisture content and storage temperatures (5 °C, 10 °C and room temperature at approx. 19 °C) for 3, 6 and 12 months. The results showed that at 3–6 months of seed storage under temperatures of 5 and 10 °C, the seeds had a high percentage of germination, viability and germination speed for C. montana and W. fagaroides compared to those stored at room temperature. At 12 months of storage, there was a marked reduction in seed germination in all treatments for both species. Furthermore, the seed germination and viability of O. grandiflora was not influenced by any of the above storage treatments. However, at the end of the experiment a slight decrease was observed, hence this species might be tolerant to medium- and long-term storage conditions. Though limited to just three co-occurring species, the study provided insight into the variability in responses to storage, with preliminary indications of appropriate storage conditions to maximize storability of seeds for restoration programs. Importantly, the study demonstrated the need for empirical testing of storage responses (temperature and duration) of seeds before subjecting untested species to a particular storage regime.

DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback