Browsing by Author "Duque Perez, Oscar"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A data-driven forecasting strategy to predict continuous hourly energy demand in smart buildings(2021) Duque Perez, OscarSmart buildings seek to have a balance between energy consumption and occupant com-fort. To make this possible, smart buildings need to be able to foresee sudden changes in the build-ing’s energy consumption. With the help of forecasting models, building energy management sys-tems, which are a fundamental part of smart buildings, know when sudden changes in the energy consumption pattern could occur. Currently, different forecasting methods use models that allow building energy management systems to forecast energy consumption. Due to this, it is increasingly necessary to have appropriate forecasting models to be able to maintain a balance between energy consumption and occupant comfort. The objective of this paper is to present an energy consumption forecasting strategy that allows hourly day-ahead predictions. The presented forecasting strategy is tested using real data from two buildings located in Valladolid, Spain. Different machine learning and deep learning models were used to analyze which could perform better with the proposed strategy. After establishing the performance of the models, a model was assembled using the mean of the prediction values of the top five models to obtain a model with better performance. © 2021 by the authors. Licensee MDPI, Basel, SwitzerlandItem Analysis of the integration of drift detection methods in learning algorithms for electrical consumption forecasting in smart buildings(2022) Mariano Hernández, Deyslen; Hernández Callejo, Luis; Solís, Martín; Zorita Lamadrid, Angel; Duque Perez, Oscar; Gonzalez Morales, Luis Gerardo; García, Felix Santos; Jaramillo Duque, Alvaro; Ospino Castro, Adalberto; Alonso Gómez, Victor; Hugo J., BelloBuildings are currently among the largest consumers of electrical energy with considerable increases in CO2 emissions in recent years. Although there have been notable advances in energy efficiency, buildings still have great untapped savings potential. Within demand-side management, some tools have helped improve electricity consumption, such as energy forecast models. However, because most forecasting models are not focused on updating based on the changing nature of buildings, they do not help exploit the savings potential of buildings. Considering the aforementioned, the objective of this article is to analyze the integration of methods that can help forecasting models to better adapt to the changes that occur in the behavior of buildings, ensuring that these can be used as tools to enhance savings in buildings. For this study, active and passive change detection methods were considered to be integrators in the decision tree and deep learning models. The results show that constant retraining for the decision tree models, integrating change detection methods, helped them to better adapt to changes in the whole building’s electrical consumption. However, for deep learning models, this was not the case, as constant retraining with small volumes of data only worsened their performance. These results may lead to the option of using tree decision models in buildings where electricity consumption is constantly changing.
