Browsing by Author "Canovas Garcia, Fulgencio Jose"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A local approach to optimize the scale parameter in multiresolution segmentation for multispectral imagery(TAYLOR AND FRANCIS LTD., 2015-09-14) Canovas Garcia, Fulgencio JoseThe results obtained using the object-based image analysis approach for remote sensing image analysis depend strongly on the quality of the segmentation step. In this paper, to optimize the scale parameter in a multiresolution segmentation, we analyse a high-resolution image of a large and heterogeneous agricultural area. This approach is based on using a set of agricultural plots extracted from official maps as uniform spatial units. The scale parameter is then optimized in each uniform spatial unit. Intra-object and inter-object heterogeneity measurements are used to evaluate each segmentation. To avoid subsegmentation, some oversegmentation is allowed, but is attenuated in a second step using the spectral difference segmentation algorithm. The statistical distribution of the scale parameter is not equal in all land uses, indicating the soundness of this local approach. A quantitative assessment of the results was also conducted for the different land covers. The results indicate that the spectral contrast between objects is larger with the local approach than with the global approach. These differences were statistically significant in all land uses except irrigated fruit trees and greenhouses. In the absence of subsegmentation, this suggests that the objects will be placed far apart in the space of variables, even if they are very close in the physical space. This is an obvious advantage in a subsequent classification of the objects.Item Modification of the random forest algorithm to avoid statistical dependence problems when classifying remote sensing imagery(ELSEVIER LTD, 2017-06-01) Canovas Garcia, Fulgencio JoseRandom forest is a classification technique widely used in remote sensing. One of its advantages is that it produces an estimation of classification accuracy based on the so called out-of-bag cross-validation method. It is usually assumed that such estimation is not biased and may be used instead of validation based on an external data-set or a cross-validation external to the algorithm. In this paper we show that this is not necessarily the case when classifying remote sensing imagery using training areas with several pixels or objects. According to our results, out-of-bag cross-validation clearly overestimates accuracy, both overall and per class. The reason is that, in a training patch, pixels or objects are not independent (from a statistical point of view) of each other; however, they are split by bootstrapping into in-bag and out-of-bag as if they were really independent. We believe that putting whole patch, rather than pixels/objects, in one or the other set would produce a less biased out-of-bag cross-validation. To deal with the problem, we propose a modification of the random forest algorithm to split training patches instead of the pixels (or objects) that compose them. This modified algorithm does not overestimate accuracy and has no lower predictive capability than the original. When its results are validated with an external data-set, the accuracy is not different from that obtained with the original algorithm. We analysed three remote sensing images with different classification approaches (pixel and object based); in the three cases reported, the modification we propose produces a less biased accuracy estimation.
