Browsing by Author "Calle Loza, Jhonatan Patricio"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Incorporación fotovoltaica y estrategias pasivas para lograr máximo aprovisionamiento y alto estándar energético en clima tropical ecuatorial(Universidad de Cuenca, 2022-02-04) Montalvo Parrales, Daniela Elizabeth; Calle Loza, Jhonatan Patricio; Zalamea León, Esteban FelipeThis research is based on the constant high energy demand that a single-family home located in a tropical equatorial climate requires to sustain the usual electrical consumptions and achieve interior thermal comfort. To perform this study, a series of bibliographies were reviewed and a survey of information was carried out onsite; additionally, a digital review of the electrical grids was performed. Once the house and its surroundings had been defined, a redesign proposal was put forward, maintaining the location. In search of the Net Zero standard, passive design strategies were applied, including cross ventilation, a ventilated roof and facade, an indoor courtyard, and solar radiation protections. Subsequently, through computer tools such as DesignBuilder and Ecotec, bioclimatic analyses were carried out, supplemented with the data reflected in the electrical grids of the single- family home in two periods: monthly and annually, corresponding to pre-pandemic conditions and the current pandemic stage. These tools served to replicate the same bioclimatic simulations in the redesign and demonstrated a significant change; this was reflected by the reduction of energy consumption compared to the demand generated by the existing home. With the aforementioned results, and by using the System Advisor Model (SAM) tool, in order to supply the base consumption of the redesign, a total of 9 PV panels (Net Zero standard) are required. However, due to the available area on the roof, the Plus Energy House standard of 18 panels were proposed, which would supply enough additional energy to power an electric vehicle and two scooters. In order to reach the maximum Plus Energy House standard, 22 PV panels would be installed, which would cover the maximum capacity of the roof and reduce dependence on fossil resources.Item Photovoltaic Ventilated Roof for Reaching Net Zero and Plus Energy Housing in the Tropical Equatorial Context(2023) Montalvo Parrales, Daniela Elizabeth; Barragán Escandón, Edgar Antonio; Calle Loza, Jhonatan Patricio; Zalamea León, Esteban FelipeThe energy requirements for dwellings in tropical equatorial climates are significant and ongoing throughout the year. Fortunately, significant and stable irradiation exists. We propose the redesign of a local-style, single-family home with a layout for a typical family of four. The methodology consists of real data on the electricity consumption of an existing case of a typical family, which is considered the source of the energy requirements to determine improvements. Once the house is characterized, it is redesigned. Its energetic behaviour is simulated with virtual tools such as ArchiCAD from Graphisoft and DesignBuilder to introduce passive strategies. Photovoltaic (PV) electrical self-supply of the building is integrated, and the inclusion of electric vehicles is considered. The house is virtually built as a dwelling with similar functions, but solar passive and active strategies are integrated to achieve high energy performance. The roof envelope configuration is the main energy source, and interior overheating is the cause. An initial reduction of 36.97% in energy requirements with only passive strategies and a double-ventilated roof is estimated. When simulating PV capability with the System Advisor Model software, nine standard PV 380 Wp panels are sized for the roof to meet the estimated power requirements, and nine additional units are needed to supply electric transportation sufficient for a single family. A model that can scalably integrate PV in accordance with demand is proposed.
