Browsing by Author "Boeckx, Pascal"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Greenhouse gas dynamics in an urbanized river system: influence of water quality and land use(2022) Ho, Long; Jerves Cobo, Ruben Fernando; Barthel, Matti; Seis, Johan; Bodé, Samuel; Boeckx, Pascal; Goethals, PedroRivers act as a natural source of greenhouse gases (GHGs). However, anthropogenic activities can largely alter the chemical composition and microbial communities of rivers, consequently affecting their GHG production. To investigate these impacts, we assessed the accumulation of CO2, CH4, and N2O in an urban river system (Cuenca, Ecuador). High variation of dissolved GHG concentrations was found among river tributaries that mainly depended on water quality and land use. By using Prati and Oregon water quality indices, we observed a clear pattern between water quality and the dissolved GHG concentration: the more polluted the sites were, the higher were their dissolved GHG concentrations. When river water quality deteriorated from acceptable to very heavily polluted, the mean value of pCO2 and dissolved CH4 increased by up to ten times while N2O concentrations boosted by 15 times. Furthermore, surrounding land-use types, i.e., urban, roads, and agriculture, could considerably affect the GHG production in the rivers. Particularly, the average pCO2 and dissolved N2O of the sites close to urban areas were almost four times higher than those of the natural sites while this ratio was 25 times in case of CH4, reflecting the finding that urban areas had the worst water quality with almost 70% of their sites being polluted while this proportion of nature areas was only 12.5%. Lastly, we identified dissolved oxygen, ammonium, and flow characteristics as the main important factors to the GHG production by applying statistical analysis and random forests. These results highlighted the impacts of land-use types on the production of GHGs in rivers contaminated by sewage discharges and surface runoff.Item Spatial and temporal variations of greenhouse gas emissions from a waste stabilization pond: effects of sludge distribution and accumulation(2021) Ho, Long; Jerves Cobo, Ruben Fernando; Morales Matute, Oscar Patricio; Larriva Vasquez, Josue Bernardo; Arevalo Durazno, Maria Belen; Barthel, Matti; Six, Johan; Bode, Samuel; Boeckx, Pascal; Goethals, PeterDue to regular influx of organic matter and nutrients, waste stabilization ponds (WSPs) can release considerable quantities of greenhouse gases (GHGs). To investigate the spatiotemporal variations of GHG emissions from WSPs with a focus on the effects of sludge accumulation and distribution, we conducted a bathymetry survey and two sampling campaigns in Ucubamba WSP (Cuenca, Ecuador). The results indicated that spatial variation of GHG emissions was strongly dependent on sludge distribution. Thick sludge layers in aerated ponds and facultative ponds caused substantial CO 2 and CH 4 emissions which accounted for 21.3% and 78.7% of the total emissions from the plant. Conversely, the prevalence of anoxic conditions stimulated the N 2 O consumption via complete denitrification leading to a net uptake from the atmosphere, i.e. up to 1.4 ±0.2 mg-N m −2 d −1 . Double emission rates of CO 2 were found in the facultative and maturation ponds during the day compared to night-time emissions, indicating the important role of algal respiration, while no diel variation of the CH 4 and N 2 O emissions was found. Despite the uptake of N 2 O, the total GHG emissions of the WSP was higher than constructed wetlands and conventional cen- tralized wastewater treatment facilities. Hence, it is recommended that sludge management with proper desludging regulation should be included as an important mitigation measure to reduce the carbon foot- print of pond treatment facilities.
