Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Balthazar, Vincent"

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Complex land cover change, water and sediment yield in a degraded Andean environment
    (2012) Molina Verdugo, Armando; Vanacker, Veerle; Balthazar, Vincent; Mora Serrano, Diego Esteban; Govers, Gerard
    Rapid land use/-cover change has increasingly transformed the hydrological functioning of tropical Andean ecosystems. The hydrological response to forest cover change strongly depends on the initial state of the ecosystem. Relatively little is known about human-disturbed ecosystems where forest plantations have been established on highly degraded land. In this paper, we analyze the impact of forest change on water and sediment fluxes for a highly degraded Andean catchment. Different pathways of land cover change (1963–2007) are observed in the Jadan catchment, with deforestation taking place in remote uplands and recovery and reforestation in the middle and lower parts where agricultural and bare lands are prevalent. Time series analyses of streamflow and rainfall data (1979/1982–2005/2007) show significant shifts in the distribution of rainfall and flow data. Changes in discharge are not resulting from changes in precipitation, as the direction of change is opposite. The removal of native forest for rangeland or croplands (by −20 km2) is likely to have contributed to the increase in total annual water yield, through an increase in annual baseflow by 25 mm. The observed changes in peakflow are important as the 1st percentile highest flow rates were 54% lower, while the 1st percentile rainfall amounts increased by 52%. The observed decrease in peakflow cannot be explained by clearcut of native forest, but is likely to be related to reforestation of degraded lands as well as spontaneous recovery of vegetation on remaining grazing lands. Over the same time period, a major decrease in specific sediment yields and suspended sediment loads was observed. Although deforestation in the upper parts led to increased landslide activity, this change is not reflected in an increased sediment yield. Small upland rivers are often nearly completely blocked by landslide material, thereby reducing their potential to transport sediment. In contrast, the reduction in estimated erosion is likely to be caused by the reduction of the degraded areas in areal extent as well as to the (partial) recovery of the vegetation in these areas
  • Loading...
    Thumbnail Image
    Item
    Complex land cover change, water and sediment yield in a degraded Andean environment
    (2012-11-23) Molina, Armando; Vanacker, Veerle; Balthazar, Vincent; Mora, Diego; Govers, Gerard
    Rapid land use/-cover change has increasingly transformed the hydrological functioning of tropical Andean ecosystems. The hydrological response to forest cover change strongly depends on the initial state of the ecosystem. Relatively little is known about human-disturbed ecosystems where forest plantations have been established on highly degraded land. In this paper, we analyze the impact of forest change on water and sediment fluxes for a highly degraded Andean catchment. Different pathways of land cover change (1963–2007) are observed in the Jadan catchment, with deforestation taking place in remote uplands and recovery and reforestation in the middle and lower parts where agricultural and bare lands are prevalent. Time series analyses of streamflow and rainfall data (1979/1982–2005/2007) show significant shifts in the distribution of rainfall and flow data. Changes in discharge are not resulting from changes in precipitation, as the direction of change is opposite. The removal of native forest for rangeland or croplands (by −20 km2) is likely to have contributed to the increase in total annual water yield, through an increase in annual baseflow by 25 mm. The observed changes in peakflow are important as the 1st percentile highest flow rates were 54% lower, while the 1st percentile rainfall amounts increased by 52%. The observed decrease in peakflow cannot be explained by clearcut of native forest, but is likely to be related to reforestation of degraded lands as well as spontaneous recovery of vegetation on remaining grazing lands. Over the same time period, a major decrease in specific sediment yields and suspended sediment loads was observed. Although deforestation in the upper parts led to increased landslide activity, this change is not reflected in an increased sediment yield. Small upland rivers are often nearly completely blocked by landslide material, thereby reducing their potential to transport sediment. In contrast, the reduction in estimated erosion is likely to be caused by the reduction of the degraded areas in areal extent as well as to the (partial) recovery of the vegetation in these areas.
  • Loading...
    Thumbnail Image
    Item
    Distribución espacio-temporal de los deslizamientos y erosión hídrica en una cuenca andina tropical
    (2020) Vanacker, Veerle; Guns, Marie; Clapuyt, Francois; Balthazar, Vincent; Tenorio, Gustavo; Molina Verdugo, Armando
    Tropical mountain regions are prone to high erosion rates, due to the occurrence of heavy rainfall events and intensely weathered steep terrain. Landslides are a recurrent phenomenon, and often considered as the dominant erosion process on the hillslopes and the main source of sediment. Quantifying the contribution of landslide-derived sediment to the overall sediment load remains a challenge. In this study, we derived catchment-average erosion rates from sediment gauging data and cosmogenic radionuclides (CRN), and examined their reliability and validity for constraining sediment yields in tectonically active regions. Then, we analysed the relationship between catchment-average erosion rates and landslide-derived sediment fluxes. The Pangor catchment, located in the western Andean mountain front, was selected for this study given its exceptionally long time series of hydrometeorological data (1974-2009). When including magnitude-frequency analyses of the sediment yields at the measurement site, the corrected gauging-based sediment yields remain one order of magnitude lower than the CRN-derived erosion rates. The underestimation of catchment-average erosion rates from gauging data points to the difficulty o f e xtrapolating fl ow fr equency an d se diment ra ting da ta in no n-stationary hy drological regimes, and severe undersampling of extreme events. In such conditions, erosion rates derived from cosmogenic radionuclides are a reliable alternative method for the quantification of catchment-average sediment yield. Landslide inventories from remote sensing data (1963-2010) and field measurements of landslide geometries are the input data for the derivation of landslide-derived sediment fluxes. The landslide-related erosion rates of 1688−+326901 and 630−+108300 t.km2.y-1 are similar to the CRN-derived erosion rates, likely indicating that landslides are the main source of sediment in this mountainous catchment. Copyright: © 2020 CSIC This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) L icense.
  • Loading...
    Thumbnail Image
    Item
    Long-term effects of climate and land cover change on freshwater provision in the tropical Andes
    (2015) Mora Serrano, Diego Esteban
    Andean headwater catchments play a pivotal role to supply fresh water for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes. In this paper, we assess multi-decadal change in freshwater provision based on long time series (1974–2008) of hydrometeorological data and land cover reconstructions for a 282 km2 catchment located in the tropical Andes. Three main land cover change trajectories can be distinguished: (1) rapid decline of native vegetation in montane forest and páramo ecosystems in ∼ 1/5 or 20 % of the catchment area, (2) expansion of agricultural land 10 by 14 % of the catchment area, (3) afforestation of 12 % of native páramo grasslands with exotic tree species in recent years. Given the strong temporal variability of precipitation and streamflow data related to El Niño–Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow that exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term climate change but very likely result from direct anthropogenic disturbances after land cover change. Partial water budgets for montane cloud forest and páramo ecosystems suggest that the strongest changes in evaporative water losses are observed in páramo ecosystems, where progressive colonization and afforestation of high alpine grasslands leads to a strong increase in transpiration losses.
  • Loading...
    Thumbnail Image
    Item
    Multidecadal change in streamflow associated with anthropogenic disturbances in the tropical Andes
    (2015) Molina Verdugo, Armando; Vanacker, Veerle; Brisson, Erwan; Mora Serrano, Diego Esteban; Balthazar, Vincent
    Andean headwater catchments are an important source of freshwater for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes in these catchments. In this paper, we assess change in streamflow based on long time series of hydrometeorological data (1974–2008) and land cover reconstructions (1963–2009) in the Pangor catchment (282 km2) located in the tropical Andes. Three main land cover change trajectories can be distinguished during the period 1963–2009: (1) expansion of agricultural land by an area equal to 14 % of the catchment area (or 39 km2) in 46 years' time, (2) deforestation of native forests by 11 % (or −31 km2) corresponding to a mean rate of 67 ha yr−1, and (3) afforestation with exotic species in recent years by about 5 % (or 15 km2). Over the time period 1963–2009, about 50 % of the 64 km2 of native forests was cleared and converted to agricultural land. Given the strong temporal variability of precipitation and streamflow data related to El Niño–Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow, which exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term change in precipitation but very likely result from anthropogenic disturbances associated with land cover change.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback