Radiolysis of carbon-dioxide ice by swift Ti and Xe ions

Abstract

Ices (H2O, CO, CO2, NH3, ..) are omnipresent in space on comets, the moons of giant planets, dust grains in dense clouds (the birthplaces of stars and planetary systems). They are exposed to cosmic rays, which in turn induce radiolysis, i.e. fragmentation of initial molecules, formation of radicals, and subsequent synthesis of molecules. Even complex pre-biotic molecules such as amino acids can be formed. Due to their high electronic energy loss the heavy ion fraction in cosmic rays yields nonnegligible contributions to sputtering and radiolysis, even if protons and alpha particles are more abundant [1]. Heavy-ion beams from large accelerator facilities are useful to simulate the specific effects induced by the heavy ion fraction of cosmic radiation in the laboratory. We complemented the experiments (550 MeV Ti beams) reported in [2] at the UNILAC M-branch, by irradiation with 630 MeV Xe beams. On-line Fourier transform infrared absorption spectroscopy (FTIR) allowed us to follow molecule destruction and synthesis in CO2 ice deposited at approx. 20 K on a CsI substrate.

Resumen

Keywords

Radiolysis, Irradiation, Carbon dioxide

Citation

Código de tesis

Código de tesis

Grado Académico

Director de tesis

Enlace al documento

Collections