Please use this identifier to cite or link to this item: http://dspace.ucuenca.edu.ec/handle/123456789/22121
Title: The effect of land-use changes on the hydrological behaviour of histic andosols in south Ecuador
Other Titles: Hydrological Processes
Authors: Buytaert, Wouter
Wyseure, Guido
Bievre, Bert De
Deckers, Jozef
Keywords: PARAMO
ANDOSOLS
RUNOFF RESPONSE
INFILTRATION
WATER RETENTION
LAND-USE CHANGES
HYDRAULIC CONDUCTIVITYS
Issue Date: Dec-2005
metadata.dc.ucuenca.paginacion: pp. 3985-3997
metadata.dc.type: Article
Abstract: 
The south Ecuadorian Andean mountain belt between 3500 and 4500 m altitude is covered by a highly endemic and fragile ecosystem called paramo. The Histic Andosols covering this regi ´ on have highly developed hydric properties and exert a key function in the hydrological regulation of the paramo ecosystem. Unlike most Andosols, their extreme ´water retention capacity is not due to the presence of typical minerals such as allophane or imogolite. Although these minerals are virtually absent, the large organic carbon content, due to organometallic complexation, gives rise to similar properties. The water content at 1500 kPa can exceed 2000 g kg 1, and the high hydraulic conductivity at saturation (about 15 mm h 1) drops sharply when low suction is applied. The three methods applied, i.e. the inverted auger hole, the tension infiltrometer and the constant-head permeameter method, give very similar results. The paramo ´is characterized by a slow hydrological response and a good water regulation, caused by the combination of a high water storage capacity and high conductivity. The wide pore size distribution of the organometallic complexes results in a water retention curve that differs significantly from the classic Mualem–Van Genuchten description, but can better be described with a simple linear or semilogarithmic model. The soils investigated are very prone to irreversible structural changes caused by land-use changes. The conversion of natural land for cultivation has a large impact on the hydrological function of the region. The water storage capacity increases by 5 to 30%, and the hydraulic conductivity is 31% higher in cultivated catchments. These changes are related to a larger peak flow, a smaller base flow and generally a smaller discharge buffering capacity, despite the higher storage capacity. Copyright  2005 John Wiley & Sons, Ltd
URI: http://dspace.ucuenca.edu.ec/handle/123456789/22121
Appears in Collections:Artículos

Files in This Item:
File Description SizeFormat 
scopus 181.pdftexto completo291.45 kBAdobe PDFView/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00