Veintimilla Reyes, Jaime EduardoDe Meyer, AnneliesCattryss, DirkTacuri Espinoza, Víctor EduardoCisneros Espinoza, Felipe EduardoVan Orshoven, JosVanegas Peralta, Pablo Fernando2019-08-062019-08-0620192073-4441https://www.mdpi.com/2073-4441/11/5/1011The allocation of water flowing through a river-with-reservoirs system to optimally meet spatially distributed and temporally variable demands can be conceived as a network flow optimization (NFO) problem and addressed by linear programming (LP). In this paper, we present an extension of the strategic NFO-LP model of our previous model to a mixed integer linear programming (MILP) model to simultaneously optimize the allocation of water and the location of one or more new reservoirs; the objective function to minimize only includes two components (floods and water demand), whereas the extended LP-model described in this paper, establishes boundaries for each node (reservoir and river segments) and can be considered closer to the reality. In the MILP model, each node is called a “candidate reservoir” and corresponds to a binary variable (zero or one) within the model with a predefined capacity. The applicability of the MILP model is illustrated for the Machángara river basin in the Ecuadorian Andes. The MILP shows that for this basin the water-energy-food nexus can be mitigated by adding one or more reservoirs.The allocation of water flowing through a river-with-reservoirs system to optimally meet spatially distributed and temporally variable demands can be conceived as a network flow optimization (NFO) problem and addressed by linear programming (LP). In this paper, we present an extension of the strategic NFO-LP model of our previous model to a mixed integer linear programming (MILP) model to simultaneously optimize the allocation of water and the location of one or more new reservoirs; the objective function to minimize only includes two components (floods and water demand), whereas the extended LP-model described in this paper, establishes boundaries for each node (reservoir and river segments) and can be considered closer to the reality. In the MILP model, each node is called a “candidate reservoir” and corresponds to a binary variable (zero or one) within the model with a predefined capacity. The applicability of the MILP model is illustrated for the Machángara river basin in the Ecuadorian Andes. The MILP shows that for this basin the water-energy-food nexus can be mitigated by adding one or more reservoirs.es-ESMILPLPNetwork flow optimization problem (NFOP)Water allocationReservoir optimizationMachángaraMILP for optimizing water allocation and reservoir location: a case study for the Machángara river basin, EcuadorARTÍCULOhttps://doi.org/10.3390/w11051011