Logo Repositorio Institucional

Please use this identifier to cite or link to this item: http://dspace.ucuenca.edu.ec/handle/123456789/38263
Title: Gradient boosting machine to assess the public protest impact on urban air quality
Authors: Mejia Coronel, Julio Danilo
Zalakeviciute, Rasa
Rybarczyk, Yves
Alexandrino, Katiuska
Diaz Suarez, Maria Valeria
Bonilla Bedoya, Santiago Patricio
Bastidas, Marco G.
metadata.dc.ucuenca.correspondencia: Zalakeviciute, Rasa, rasa.zalake@gmail.com
Keywords: Urban pollution
Machine learning
metadata.dc.ucuenca.areaconocimientofrascatiamplio: 1. Ciencias Naturales y Exactas
metadata.dc.ucuenca.areaconocimientofrascatidetallado: 1.5.8 Ciencias del Medioambiente
metadata.dc.ucuenca.areaconocimientofrascatiespecifico: 1.5 Ciencias de la Tierra y el Ambiente
metadata.dc.ucuenca.areaconocimientounescoamplio: 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
metadata.dc.ucuenca.areaconocimientounescodetallado: 0521 - Ciencias Ambientales
metadata.dc.ucuenca.areaconocimientounescoespecifico: 052 - Medio Ambiente
Issue Date: 2021
metadata.dc.ucuenca.volumen: Volumen 11, número 24
metadata.dc.source: Applied Sciences
metadata.dc.identifier.doi: 10.3390/app112412083
metadata.dc.type: ARTÍCULO
Political and economic protests build-up due to the financial uncertainty and inequality spreading throughout the world. In 2019, Latin America took the main stage in a wave of protests. While the social side of protests is widely explored, the focus of this study is the evolution of gaseous urban air pollutants during and after one of these events. Changes in concentrations of NO2, CO, O3 and SO2 during and after the strike, were studied in Quito, Ecuador using two approaches: (i) inter-period observational analysis; and (ii) machine learning (ML) gradient boosting machine (GBM) developed business-as-usual (BAU) comparison to the observations. During the strike, both methods showed a large reduction in the concentrations of NO2 (31.5–32.36%) and CO (15.55–19.85%) and a slight reduction for O3 and SO2. The GBM approach showed an exclusive potential, especially for a lengthier period of predictions, to estimate strike impact on air quality even after the strike was over. This advocates for the use of machine learning techniques to estimate an extended effect of changes in human activities on urban gaseous pollution.
URI: http://dspace.ucuenca.edu.ec/handle/123456789/38263
metadata.dc.ucuenca.urifuente: https://www.mdpi.com/2076-3417/11/24
ISSN: 2076-3417
Appears in Collections:Artículos

Files in This Item:
File Description SizeFormat 
documento.pdfdocument2.63 MBAdobe PDFThumbnail

This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00