Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: http://dspace.ucuenca.edu.ec/handle/123456789/34340
Título : UAV-Based air pollutant source localization using combined metaheuristic and probabilistic methods
Autor: Minchala Avila, Luis Ismael
Youmin, Zhang
Yungaicela Naula, Noe Marcelo
Garza Castañón, Luis Eduardo
Correspondencia: Garza Castañón, Luis Eduardo, legarza@itesm.mx
Palabras clave : Bayesian
Air pollution
UAV
Source location
Metaheuristic
Area de conocimiento FRASCATI amplio: 2. Ingeniería y Tecnología
Area de conocimiento FRASCATI detallado: 2.2.1 Ingeniería Eléctrica y Electrónica
Area de conocimiento FRASCATI específico: 2.2 Ingenierias Eléctrica, Electrónica e Información
Area de conocimiento UNESCO amplio: 07 - Ingeniería, Industria y Construcción
Area de conocimiento UNESCO detallado: 0714 - Electrónica y Automatización
Area de conocimiento UNESCO específico: 071 - Ingeniería y Profesiones Afines
Fecha de publicación : 2019
Volumen: vol. 9
Fuente: Applied Sciences (Switzerland)
metadata.dc.identifier.doi: 10.3390/app9183712
Tipo: ARTÍCULO
Abstract: 
Air pollution is one of the greatest risks for the health of people. In recent years, platforms based on Unmanned Aerial Vehicles (UAVs) for the monitoring of pollution in the air have been studied to deal with this problem, due to several advantages, such as low-costs, security, multitask and ease of deployment. However, due to the limitations in the flying time of the UAVs, these platforms could perform monitoring tasks poorly if the mission is not executed with an adequate strategy and algorithm. Their application can be improved if the UAVs have the ability to perform autonomous monitoring of the areas with a high concentration of the pollutant, or even to locate the pollutant source. This work proposes an algorithm to locate an air pollutant’s source by using a UAV. The algorithm has two components: (i) a metaheuristic technique is used to trace the increasing gradient of the pollutant concentration, and (ii) a probabilistic component complements the method by concentrating the search in the most promising areas in the targeted environment. The metaheuristic technique has been selected from a simulation-based comparative analysis between some classical techniques. The probabilistic component uses the Bayesian methodology to build and update a probability map of the pollutant source location, with each new sensor information available, while the UAV navigates in the environment. The proposed solution was tested experimentally with a real quadrotor navigating in a virtual polluted environment. The results show the effectiveness and robustness of the algorithm.
Resumen : 
Air pollution is one of the greatest risks for the health of people. In recent years, platforms based on Unmanned Aerial Vehicles (UAVs) for the monitoring of pollution in the air have been studied to deal with this problem, due to several advantages, such as low-costs, security, multitask and ease of deployment. However, due to the limitations in the flying time of the UAVs, these platforms could perform monitoring tasks poorly if the mission is not executed with an adequate strategy and algorithm. Their application can be improved if the UAVs have the ability to perform autonomous monitoring of the areas with a high concentration of the pollutant, or even to locate the pollutant source. This work proposes an algorithm to locate an air pollutant's source by using a UAV. The algorithm has two components: (i) a metaheuristic technique is used to trace the increasing gradient of the pollutant concentration, and (ii) a probabilistic component complements the method by concentrating the search in the most promising areas in the targeted environment. The metaheuristic technique has been selected from a simulation-based comparative analysis between some classical techniques. The probabilistic component uses the Bayesian methodology to build and update a probability map of the pollutant source location, with each new sensor information available, while the UAV navigates in the environment. The proposed solution was tested experimentally with a real quadrotor navigating in a virtual polluted environment. The results show the effectiveness and robustness of the algorithm.
URI : http://dspace.ucuenca.edu.ec/handle/123456789/34340
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85072396469&origin=inward
URI Fuente: https://www.mdpi.com/2076-3417/9/18
ISSN : 2076-3417
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
documento.pdfdocument13.93 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00