Logo Repositorio Institucional

Please use this identifier to cite or link to this item: http://dspace.ucuenca.edu.ec/handle/123456789/34242
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVazquez Patiño, Angel Oswaldo
dc.contributor.authorSamaniego Alvarado, Esteban Patricio
dc.contributor.authorMendoza Siguenza, Daniel Emilio
dc.contributor.authorCampozano Parra, Lenin Vladimir
dc.date.accessioned2020-05-07T23:18:15Z-
dc.date.available2020-05-07T23:18:15Z-
dc.date.issued2020
dc.identifier.issn08998418
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/34242-
dc.identifier.urihttps://api.elsevier.com/content/abstract/scopus_id/85078012173
dc.description© 2020 Royal Meteorological Society Global climate models (GCMs) are generally used to forecast weather, understand the present climate, and project climate change. Their reliability usually rests on their capability to represent climatic processes, and most evaluations directly measure the spatiotemporal agreement of scalar climate variables. However, climate naturally involves complex interactions that are hard to infer and, therefore, difficult to evaluate. Climate networks (CNs) have been used to infer flows of mass and energy in the complex climate system. Here, an Evaluation of Models by Causal Flows (EMCaF) is proposed. EMCaF focuses on the assessment of properties about mass and energy flows in the CNs derived from GCMs. First, causal CNs are inferred from GCMs, and then the capabilities to reproduce characteristic transfer flows are assessed with reference models. A more in-depth feature is the possibility to assess how climate change disturbs CNs properties. In addition to the quantitative difference between modelled and observed values taken into account in standard evaluations, the EMCaF approach aims to assess the weaknesses and strengths of GCMs to represent climate mechanisms and processes that couple different components of the climate system. The comparison of models through this approach allows having complimentary feedback on model evaluations to understand possible causes of errors and enable a judgement based on processes. The approach is illustrated by evaluating one GCM and subsequently assessing changes of its CNs under future climate projections. Results show that known climatic patterns are assimilated and that causal strength patterns are likely to agree with the wind magnitude as a transfer factor. Significative issues are then explored, showing the capabilities of the approach and allowing understand fundamental structures in transport flows, compare their properties, and assess changes in the future. Different alternatives and considerations in each step of the approach are discussed to expand its applicability.
dc.description.abstract© 2020 Royal Meteorological Society Global climate models (GCMs) are generally used to forecast weather, understand the present climate, and project climate change. Their reliability usually rests on their capability to represent climatic processes, and most evaluations directly measure the spatiotemporal agreement of scalar climate variables. However, climate naturally involves complex interactions that are hard to infer and, therefore, difficult to evaluate. Climate networks (CNs) have been used to infer flows of mass and energy in the complex climate system. Here, an Evaluation of Models by Causal Flows (EMCaF) is proposed. EMCaF focuses on the assessment of properties about mass and energy flows in the CNs derived from GCMs. First, causal CNs are inferred from GCMs, and then the capabilities to reproduce characteristic transfer flows are assessed with reference models. A more in-depth feature is the possibility to assess how climate change disturbs CNs properties. In addition to the quantitative difference between modelled and observed values taken into account in standard evaluations, the EMCaF approach aims to assess the weaknesses and strengths of GCMs to represent climate mechanisms and processes that couple different components of the climate system. The comparison of models through this approach allows having complimentary feedback on model evaluations to understand possible causes of errors and enable a judgement based on processes. The approach is illustrated by evaluating one GCM and subsequently assessing changes of its CNs under future climate projections. Results show that known climatic patterns are assimilated and that causal strength patterns are likely to agree with the wind magnitude as a transfer factor. Significative issues are then explored, showing the capabilities of the approach and allowing understand fundamental structures in transport flows, compare their properties, and assess changes in the future. Different alternatives and considerations in each step of the approach are discussed to expand its applicability.
dc.language.isoes_ES
dc.sourceInternational Journal of Climatology
dc.subjectClimate networks
dc.subjectDirected networks
dc.subjectTransfer flows
dc.subjectCausal links
dc.subjectGranger causality
dc.subjectCausal comparison
dc.subjectCausal strength
dc.subjectClimate model evaluation
dc.titleA causal flow approach for the evaluation of global climate models
dc.typeARTÍCULO
dc.ucuenca.idautor0103901070
dc.ucuenca.idautor0105725634
dc.ucuenca.idautor0102677200
dc.ucuenca.idautor0102052594
dc.identifier.doi10.1002/joc.6470
dc.ucuenca.embargoend2050-05-07
dc.ucuenca.versionVersión publicada
dc.ucuenca.embargointerno2050-05-07
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
dc.ucuenca.afiliacionVazquez, A., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador; Vazquez, A., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador; Vazquez, A., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionSamaniego, E., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador; Samaniego, E., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador
dc.ucuenca.afiliacionMendoza, D., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador; Mendoza, D., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador
dc.ucuenca.afiliacionCampozano, L., Escuela Politécnica Nacional (Quito), Quito, Ecuador
dc.ucuenca.correspondenciaVazquez Patiño, Angel Oswaldo, angel.vazquezp@ucuenca.edu.ec
dc.ucuenca.volumenvolumen 0
dc.ucuenca.indicebibliograficoSCOPUS
dc.ucuenca.factorimpacto3.601
dc.ucuenca.cuartilQ1
dc.ucuenca.numerocitaciones4497
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología
dc.ucuenca.areaconocimientofrascatiespecifico2.7 Ingeniería del Medio Ambiente
dc.ucuenca.areaconocimientofrascatidetallado2.7.1 Ingeniería Ambiental y Geológica
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales
dc.ucuenca.urifuentehttps://rmets.onlinelibrary.wiley.com/
Appears in Collections:Artículos

Files in This Item:
File Description SizeFormat 
documento.pdf
  Until 2050-05-07
document64.39 kBAdobe PDFView/Open Request a copy


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00