Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Orellana Parapi, Jose Miguel"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Red neuronal para clasificación de riesgo en cooperativas de ahorro y crédito
    (UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE, 2018) Peña Ortega, Mario Patricio; Orellana Parapi, Jose Miguel; Peña Ortega, Mario Patricio
    In Ecuador exists a great number of credit unions (COAC) specifically 852, which are divided into 5 segments depending on their amount of assets. Nowadays, 66% of the microcredit obtained within the country corresponds to the cooperative system. Nevertheless, just 35 of 58 COAC (segments 1 and 2) present risk rating histories. The purpose of this research is create a neural network that achieves an acceptable percentage of accuracy, to classify a COAC within a scale of risk based on the value of its financial indexes; in order to helping the early detection of future problems. The artificial neural network (ANN) was fitted from data obtained through the Public and solidary economy Superintendence for COAC that presented a high index of assets. In addition, the history of quarterly risk ratings generated by rating agencies in the same period was used: January 2015 - September 2017. An ANN with a classification accuracy of 79.59% was obtained, percentage that is within the range of precision obtained by studies reviewed for classification activities in financial entities. The classification results could be further improved with the use of a hierarchical classification structure.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback