Optimización del funcionamiento de estructuras hidráulicas complejas a través de modelación física. Caso de estudio: vertederos tipo abanico y laberinto.

Trabajo de titulación previo a la obtención del título de Magister en Investigación en Ciencias de la Ingeniería para la Gestión de los Recursos Hídricos

Autor
Ing. Civil. Erwin Horacio Barahona Ochoa
C.I: 0104308705

Director:
Ing. Felipe Eduardo Cisneros Espinoza. PhD.
C.I: 0101045540

Asesor:
Ing. María Soledad Estrella Toral. PhD.
C.I: 0103425971

Cuenca – Ecuador
18-09-2019
RESUMEN

Los vertederos en abanico y laberinto son estructuras hidráulicas complejas que se presentan como una excelente alternativa para regular niveles de agua e incrementar la capacidad de descarga en aliviaderos que requieren desaguar altos caudales de diseño. Sin embargo, por las complejas características del flujo en estas estructuras puede ser difícil conseguir un diseño óptimo en base únicamente a la literatura existente. En casos así, es cuando la modelación física es una herramienta que genera soluciones innovadoras a los problemas hidráulicos complejos, a más de ser la base para la generación de nuevos conocimientos. La presente investigación fue conducida para optimizar el comportamiento de estructuras hidráulicas especiales para el proyecto PACALORI a través modelos físicos, específicamente los casos de aliviaderos con vertedero de tipo abanico y laberinto. Se construyeron tres modelos físicos a escala no distorsionada y fundamentados en el criterio de similitud de Froude, el aliviadero con vertedero en abanico a escala 1:30 y los aliviaderos con vertedero en laberinto a escala 1:45. Los resultados alcanzados permitieron evaluar cualitativamente las características del complejo flujo tridimensional sobre las mismas y optimizar los componentes hidráulicos de cada una de ellas a través del planteamiento y evaluación de alternativas de diseño. Del análisis de los resultados experimentales, y como contribución de esta investigación, se determinó que el rango de variación del coeficiente de descarga C_d para vertederos en abanico puede estar entre 2.06 y 2.15 para $0.3 < H/H_d < 1.0$. En el caso de vertederos en laberinto los resultados experimentales muestran que modelo de Darvas (1971) es el que mejor estima el coeficiente de descarga C_d considerando el uso de pilas separadoras de flujo en los vértices aguas arriba y aguas abajo del laberinto trapezoidal; asimismo se ha visto que la capacidad de descarga disminuye sin estos elementos, puesto que la longitud efectiva es menor y el coeficiente de descarga para mayor seguridad puede estimarse mejor con los modelos de B. M. Crookston (2010) y Bilhan et al. (2016). Los resultados obtenidos servirán como una nueva base para el planteamiento del diseño de vertederos en abanico y laberinto, sin embargo, después de analizar la importancia de la verificación experimental se recomienda necesario verificar siempre el desempeño hidráulico de este tipo de estructuras a través de un estudio en modelo físico.

ABSTRACT

Labyrinth and fan spillways are complex structures, presented as an alternative to regulate water levels and increase the discharge capacity of high demanding structures in comparison to the possibilities offered by frontal spillways with standard crest. However, due to its complex flow characteristics, it is difficult to achieve an optimum design of these structures based only on the current literature. Hence, physical modelling arises to provide innovative solutions to complex hydraulic problems, as well as, to produce the basis of new knowledge. This study aims to optimize behavior of special hydraulic structures for PACALORI project using physical modeling, specifically, labyrinth and fan spillways cases. With this objective, three physical models were built using a non-distorted scale under Froude’s similarity: a fan spillway at scale 1:30 and two labyrinth spillways at scale 1:45. The results obtained, allow qualitatively to evaluate the complex 3D-flow characteristics produced and to optimize the hydraulic components of each structure by a trial and error of different alternatives. Results from the experimental analysis contributed to determine a range of variation for the discharge coefficient (C_d) for fan spillways between 2.06 and 2.15 for $0.3 < H/H_d < 1.0$. On the other hand, experimental results for labyrinth spillways showed that Darvas model (1971) is more accurate to estimate the discharge coefficient (C_d) when the nappe breakers upstream and downstream of labyrinth weirs vertex are used. Furthermore, experiments showed that discharge capacity is reduced without the separating stacks, given that the effective length decreases, for this case, the discharge coefficient can be safely estimated using models referred by B. M. Crookston (2010) and Bilhan et al. (2016). Although the current study contributes to the knowledge for further designs for fan and labyrinth spillways, it also highlights the importance of experimental validation and therefore, it is recommended to verify the hydraulic behavior of these structures by a physical modeling.

Keywords: Discharge coefficient. Hydraulic performance. Physical models. Fan spillway. Labyrinth spillway.
TABLA DE CONTENIDO

RESUMEN ... 2

ABSTRACT ... 3

TABLA DE CONTENIDO ... 4

LISTA DE FIGURAS ... 7

LISTA DE TABLAS .. 10

DEDICATORIA ... 13

AGRADECIMIENTOS ... 14

CAPÍTULO 1 INTRODUCCIÓN .. 15

1.1 ANTECEDENTES Y JUSTIFICACIÓN DEL ESTUDIO ... 15

1.2 OBJETIVOS DEL ESTUDIO .. 17

1.3 ESTRUCTURA DE LA TESIS ... 17

CAPÍTULO 2 MARCO TEÓRICO ... 19

2.1 INTRODUCCIÓN .. 19

2.2 ALIVIADEROS Y SUS CRITERIOS DE DISEÑO ... 19

2.2.1 Aliviaderos con vertedero en abanico ... 21

2.2.2 Aliviaderos con vertedero en laberinto .. 25

2.3 CRITERIOS DE DISEÑO DE LAS ESTRUCTURAS COMPLEMENTARIAS A LOS ALIVIADEROS 32

2.3.1 Canal de aproximación ... 32

2.3.2 Canal de descarga ... 33

2.3.3 Cuenco disipador (Disipador de energía) .. 34

2.3.4 Canal de restitución .. 36

2.4 MODELCACIÓN FÍSICA EN HIDRÁULICA .. 36

2.4.1 Criterios de similitud .. 37

2.4.2 Efectos de escala ... 40

2.4.3 Investigación en aliviaderos con vertedero Abanico y Laberinto a través de modelos físicos 42

CAPÍTULO 3 MATERIALES Y MÉTODOS ... 44

3.1 INTRODUCCIÓN .. 44

3.2 INTRODUCCIÓN AL CASO DE ESTUDIO: PROYECTO PACALORI .. 44

3.2.1 Aliviadero con vertedero en abanico de la presa Lechugal 2 .. 49

3.2.2 Aliviadero con vertedero en laberinto de la presa Macul 1 y Macul 2 50
CAPÍTULO 4 RESULTADOS Y DISCUSIÓN 72

4.1 CALIBRACIÓN Y ANÁLISIS DE ESCALA DE LOS MODELOS FÍSICOS 72

4.1.1 Aliviadero con vertedero en abanico 72

4.1.2 Aliviaderos con vertedero en laberinto 73

4.2 EVALUACIÓN EXPERIMENTAL DEL ALIVIADERO CON VERTEDERO EN ABANICO 74

4.2.1 Evaluación del diseño original 74

4.2.2 Conclusiones de la evaluación al diseño original 82

4.2.3 Alternativas planteadas al diseño original del aliviadero con vertedero en abanico 83

4.3 EVALUACIÓN EXPERIMENTAL DEL ALIVIADERO CON VERTEDEROS EN LABERINTO 86

4.3.1 Evaluación del diseño original – Aliviadero Macul 1 86

4.3.2 Conclusiones y recomendaciones – Aliviadero Macul 1 91

4.3.3 Alternativas planteadas al diseño original del aliviadero con vertedero en laberinto –

4.3.4 Evaluación del diseño original – Aliviadero Macul 2 93

4.3.5 Conclusiones de la evaluación al diseño original – Aliviadero Macul 2 99

4.3.6 Alternativas al diseño original: Estudios experimentales para la optimización de la disipación en el cuenco amortiguador 101

4.4 ANÁLISIS COMPARATIVO DEL DESEMPEÑO HIDRÁULICO DE VERTEDEROS EN LABERINTO 103

CAPÍTULO 5 CONCLUSIONES Y RECOMENDACIONES 107

5.1 ALIVIADEROS CON VERTEDEROS EN ABANICO 107

5.2 ALIVIADEROS CON VERTEDERO EN LABERINTO 109

5.3 APLICACIÓN DE LA MODELACIÓN FÍSICA EN INGENIERÍA HIDRÁULICA 110
RECOMENDACIONES PARA FUTUROS ESTUDIOS

BIBLIOGRAFÍA
LISTA DE FIGURAS

FIGURA 2.1 TIPOS DE VERTEDEROS SEGÚN SU GEOMETRÍA EN PLANTA .. 20
FIGURA 2.2 VERTEDERO FRONTAL ... 21
FIGURA 2.3 DESCRIPCIÓN DE PARÁMETROS HIDRÁULICOS DEL VERTEDERO EN ABANICO 22
FIGURA 2.4 RELACIONES ENTRE ELEMENTOS GEOMÉTRICOS DE UN VERTEDERO EN ABANICO 23
FIGURA 2.5 COEFICIENTE DE DESCARGA PARA UN VERTEDERO TIPO CREAGER CON PARED VERTICAL AGUAS ARRIBA .. 25
FIGURA 2.6 CLASIFICACIÓN DE VERTEDEROS EN LABERINTO: A) TRIANGULAR, B) TRAPEZOIDAL Y C) RECTANGULAR. (W= Un ciclo) 26
FIGURA 2.7 DESCRIPCIÓN DE PARÁMETROS HIDRÁULICOS DEL VERTEDERO EN LABERINTO 27
FIGURA 2.8 FACTOR DE INCREMENTO DE LONGITUD, HAY AND TAYLOR (1970) .. 29
FIGURA 2.9 CW VS (L/W), DARVAS (1971) .. 29
FIGURA 2.10 Uq vs (L/W), MAGALHAES (1985) .. 30
FIGURA 2.11 Uq vs (L/W), LUX AND HINCHLIFF (1985) ... 30
FIGURA 2.12 TEOREMA DE BERNOULLI PARA FLUJO EN CANALES ABIERTOS ... 33
FIGURA 2.13 CUENCOS DISIPADOR: A) TIPO II; B) TIPO III; C) TIPO IV; D) TIPO V 35
FIGURA 3.1 DIVISIÓN POLÍTICA DE LA DEMARCACIÓN HIDROGRÁFICA DE LA CUENCA DEL RÍO GUAYAS 45
FIGURA 3.2 EMBALSES Y CONDUCCIONES DEL PROYECTO PACALORI .. 46
FIGURA 3.3 ESQUEMA DE TRASVASES DEL PROYECTO PACALORI .. 47
FIGURA 3.4 ESQUEMA GENERAL DEL ALIVIADERO CON VERTEDERO EN ABANICO — PRESA LECHUGAL 2 ... 53
FIGURA 3.5 ESQUEMA GENERAL DEL ALIVIADERO CON VERTEDERO EN LABERINTO — PRESA MACUL 1. LAS COTAS ESTÁN EN M S.N.M. ... 54
FIGURA 3.6 ESQUEMA GENERAL DEL ALIVIADERO CON VERTEDERO EN LABERINTO — PRESA MACUL 2. LAS COTAS ESTÁN EN M S.N.M. ... 55
FIGURA 3.7 VISTA AÉREA DEL LABORATORIO DE MODELACIÓN FÍSICA DEL PROMAS-UNIVERSIDAD DE CUENCA ... 56
FIGURA 3.8 RESERVOIR PARA ALMACENAMIENTO DE AGUA DENTRO DEL LABORATORIO 57
FIGURA 3.9 MODELO FÍSICO DEL ALIVIADERO CON VERTEDERO EN ABANICO — LECHUGAL 2 58
FIGURA 3.10 VISTA EN PLANTA Y SECCIÓN LONGITUDINAL DEL ALIVIADERO CON VERTEDERO EN ABANICO LECHUGAL 2 (LAS DIMENSIONES ESTÁN EN CENTÍMETROS) ... 59
FIGURA 3.11 MODELO FÍSICO DEL ALIVIADERO CON VERTEDERO EN LABERINTO — MACUL 60
FIGURA 3.12 VISTA EN PLANTA Y SECCIÓN LONGITUDINAL DEL ALIVIADERO EN LABERINTO — MACUL 1 (LAS DIMENSIONES ESTÁN EN CENTÍMETROS) ... 61
FIGURA 3.13 MODELO FÍSICO DEL ALIVIADERO CON VERTEDERO EN LABERINTO — MACUL 2 61
FIGURA 3.14 VISTA EN PLANTA Y SECCIÓN LONGITUDINAL DEL ALIVIADERO EN LABERINTO — MACUL 2 (LAS DIMENSIONES ESTÁN EN CENTÍMETROS) ... 62
FIGURA 3.15 VERTEDEROS PARA MEDICIÓN DE CAUDALES ... 62
FIGURA 3.16 CURVA DE DESCARGA DE VERTEDEROS TRIANGULARES .. 63
FIGURA 3.17 CURVA DE DESCARGA DEL VERTEDERO RECTANGULAR .. 64
FIGURA 3.18 MICRO MOULINETE – AQUA COUNT ... 65
FIGURA 3.19 TUBO PITOT–PRANDTL .. 65
FIGURA 3.20 SISTEMA FLOW TRACKER .. 66
FIGURA 3.21 LIMNIÍMETROS DE PRECISION ... 67
FIGURA 3.22 OBSERVACIÓN DEL PATRÓN Y DIRECCION DEL FLUIDO CON TRAZADORES .. 67
FIGURA 3.23 CÁMARA FOTOGRAFICA SONY 16.2 MEGAPIXÉLES 67
FIGURA 4.1 Distribución de secciones dentro del aliviadero – Lechugal 1 75
FIGURA 4.2 Datos experimentales y predictivos (USBR) del flujo sobre el vertedero (unidades en prototipo) 76
FIGURA 4.3 Comparación de los coeficientes de descarga para cargas diferentes a la carga de diseño (unidades en prototipo) .. 76
FIGURA 4.4 Puntos de medición de los parámetros hidráulicos en el modelo físico 77
FIGURA 4.5 Distribución del flujo aguas abajo del vertedero de excesos para un caudal de 240.41 m³/s 78
FIGURA 4.6 Registro de velocidades y calados durante el estudio 78
FIGURA 4.7 Características del flujo aguas abajo del aliviadero para el caudal de diseño (AMP) 326.44 m³/s 79
FIGURA 4.8 Características del flujo de aproximación hacia la estructura de disipación de energía 80
FIGURA 4.9 Esquema del cuenco amortiguador Tipo I ... 80
FIGURA 4.10 Evaluación de la eficiencia del cuenco amortiguador 81
FIGURA 4.11 Visualización del comportamiento del flujo dentro del cuenco amortiguador ... 81
FIGURA 4.12 Alternativa 1, distribución de rápidas dentro del canal de descarga del aliviadero 84
FIGURA 4.13 Alternativa 2, distribución de rápidas dentro del canal de descarga del aliviadero y colocación de dados de impacto .. 85
FIGURA 4.14 Geometría y distribución de dados de impacto en la sección inicial de la rápida 4 85
FIGURA 4.15 Alternativa 2: Distribución de dados de impacto en la sección inicial de la rápida 4 (la línea roja representa el final del cuenco amortiguador) .. 86
FIGURA 4.16 Distribución de secciones dentro del aliviadero – Macul 1 87
FIGURA 4.17 Caudal vs H₂/p para el vertedero en laberinto de geometría trapezoidal – Macul 1 88
FIGURA 4.18 Distribución del flujo de aproximación hacia el vertedero de excesos 89
FIGURA 4.19 Distribución de pilas intermedias (amarillo) y separadores de lámina vertiente (azul) 90
FIGURA 4.20 Influencia de pilas intermedias y separadores de lámina vertiente en el vertedero en laberinto. Caudal de diseño (AMP) de 918.59 m³/s .. 90
FIGURA 4.21 Efectos de sumergencia en el módulo del vertedero en laberinto 90
FIGURA 4.22 Régimen de flujo supercrítico a través del cuenco y canal de restitución; Caudal de diseño (AMP) de 918.59 m³/s... 91
FIGURA 4.23 Alternativa de disipación de energía aguas abajo del vertedero 92
FIGURA 4.24 Caudal vs H₂/p para el vertedero en laberinto trapezoidal – Macul 2 94
FIGURA 4.25 Distribución del flujo de aproximación hacia el vertedero de excesos tipo laberinto para el caudal de diseño (AMP) de 1017.50 m³/s .. 95
FIGURA 4.26 Separadores de napa colocados aguas arriba del vértice ... 95
FIGURA 4.27 Distribución de secciones dentro del aliviadero - Macul 2. ... 96
FIGURA 4.28 Condiciones de descarga para el caudal de diseño (AMP) de 1017.50 m3/s sobre el vertedero en
laberinto.. 97
FIGURA 4.29 Distribución de ondas cruzadas en el aliviadero, Q= 718.97 m3/s– Macul 2 ... 97
FIGURA 4.30 Evaluación de la eficiencia del cuenco amortiguador, Q= 1017.50 m3/s. .. 99
FIGURA 4.31 Influencia del resalto hidráulico sobre el canal de restitución .. 99
FIGURA 4.32 Esquema de distribución de dados de impacto en la alternativa 1 .. 101
FIGURA 4.33 Representación de la alternativa 1 en el modelo físico y los efectos generados dentro del cuenco. ... 102
FIGURA 4.34 Esquema de propuesto en la alternativa 2 .. 102
FIGURA 4.35 Alternativa 2: Distribución del flujo dentro del cuenco amortiguador, Q= 1017.50 m3/s. 103
FIGURA 4.36 Comparación del coeficiente de descarga experimental... 104
FIGURA 4.37 Comparación del coeficiente de descarga experimental (C_d vs H_f/p) .. 105
FIGURA 4.38 Comparación del coeficiente de descarga experimental (C_d vs H_f/p). ... 106
<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Coeficientes de ajuste para determinar el coeficiente de descarga en vertederos en laberinto</td>
<td>31</td>
</tr>
<tr>
<td>2-2</td>
<td>Coeficientes de descarga por unidad de longitud para vertederos en laberinto</td>
<td>32</td>
</tr>
<tr>
<td>2-3</td>
<td>Investigaciones en modelo físico de vertederos en abanico y laberinto</td>
<td>42</td>
</tr>
<tr>
<td>3-1</td>
<td>Resultados del estudio para la obra de alivio del Trasvase Quevedo-Macul-Mocache</td>
<td>48</td>
</tr>
<tr>
<td>3-2</td>
<td>Resultados del estudio para la obra de alivio del Trasvase Calabí-Lechugal-Chojampe</td>
<td>48</td>
</tr>
<tr>
<td>3-3</td>
<td>Laminación de avenidas para diferentes periodos de retorno</td>
<td>49</td>
</tr>
<tr>
<td>3-4</td>
<td>Parámetros de diseño del vertedero en abanico – Lechugal</td>
<td>50</td>
</tr>
<tr>
<td>3-5</td>
<td>Parámetros de diseño del vertedero en laberinto – Macul 1</td>
<td>51</td>
</tr>
<tr>
<td>3-6</td>
<td>Parámetros de diseño del vertedero en laberinto – Macul 2</td>
<td>51</td>
</tr>
<tr>
<td>3-7</td>
<td>Relaciones de escala para los parámetros más significativos utilizados en este estudio</td>
<td>57</td>
</tr>
<tr>
<td>3-8</td>
<td>Relaciones de escala para los parámetros más significativos utilizados en este estudio</td>
<td>59</td>
</tr>
<tr>
<td>3-9</td>
<td>Resumen de pruebas experimentales efectuadas</td>
<td>70</td>
</tr>
<tr>
<td>3-10</td>
<td>Resumen de pruebas experimentales efectuadas</td>
<td>71</td>
</tr>
<tr>
<td>4-1</td>
<td>Resultados experimentales para el análisis del número de Reynolds – Lechugal</td>
<td>72</td>
</tr>
<tr>
<td>4-2</td>
<td>Resumen de resultados experimentales para el análisis del número de Weber</td>
<td>73</td>
</tr>
<tr>
<td>4-3</td>
<td>Parámetros de análisis de escala – Macul 1</td>
<td>73</td>
</tr>
<tr>
<td>4-4</td>
<td>Parámetros de análisis de escala – Macul 2</td>
<td>74</td>
</tr>
<tr>
<td>4-5</td>
<td>Características del flujo en la sección de control aguas abajo del aliviadero (Unidades en prototipo)</td>
<td>77</td>
</tr>
<tr>
<td>4-6</td>
<td>Registro de velocidades medidas en laboratorio – Lechugal</td>
<td>78</td>
</tr>
<tr>
<td>4-7</td>
<td>Registro de parámetros medidos al final de la rápida 3, ingreso al cuenco amortiguador</td>
<td>79</td>
</tr>
<tr>
<td>4-8</td>
<td>Parámetros del cuenco amortiguador medidos en el modelo hidráulico</td>
<td>80</td>
</tr>
<tr>
<td>4-9</td>
<td>Resultados obtenidos en la alternativa 1: sin datos de impacto (Unidades en prototipo)</td>
<td>84</td>
</tr>
<tr>
<td>4-10</td>
<td>Resultados obtenidos con la alternativa 2, ubicación de 8 datos de impacto en la rápida 4</td>
<td>85</td>
</tr>
<tr>
<td>4-11</td>
<td>Resumen de resultados experimentales – Macul 1</td>
<td>87</td>
</tr>
<tr>
<td>4-12</td>
<td>Resultados de parámetros medidos en el modelo físico – Macul 1</td>
<td>91</td>
</tr>
<tr>
<td>4-13</td>
<td>Resultados de parámetros medidos en laboratorio implementado el cuenco</td>
<td>93</td>
</tr>
<tr>
<td>4-14</td>
<td>Resumen de resultados experimentales – Macul 2</td>
<td>93</td>
</tr>
<tr>
<td>4-15</td>
<td>Resultados de parámetros medidos en laboratorio</td>
<td>96</td>
</tr>
<tr>
<td>4-16</td>
<td>Registro de parámetros medidos en la rápida 3 (Sección 6)</td>
<td>98</td>
</tr>
<tr>
<td>4-17</td>
<td>Parámetros del cuenco disipador levantados en laboratorio</td>
<td>98</td>
</tr>
</tbody>
</table>
Cláusula de licencia y autorización para publicación en el Repositorio Institucional

Erwin Horacio Barahona Ochoa en calidad de autor y titular de los derechos morales y patrimoniales del trabajo de titulación “Optimización del funcionamiento de estructuras hidráulicas complejas a través de modelación física. Caso de estudio: vertederos tipo abanico y laberinto”, de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el repositorio institucional, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Cuenca, 18 de septiembre de 2019.

Erwin Horacio Barahona Ochoa
C.I: 010430870-5
Cláusula de Propiedad Intelectual

Erwin Horacio Barahona Ochoa, autor del trabajo de titulación “Optimización del funcionamiento de estructuras hidráulicas complejas a través de modelación física. Caso de estudio: vertederos tipo abanico y laberinto”, certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor.

Cuenca, 18 de septiembre de 2019.

[Signature]

C.I: 010430870-5
DEDICATORIA

A Dios, por las bendiciones constantes.

A mi paciente y amada esposa, Katherine.

Al tesoro más preciado, mi hija Valentina.

A mi familia, por el apoyo incondicional.
AGRADECIMIENTOS

El camino inicio con un sueño, cuya meta fue el aprendizaje. Sin embargo, las dificultades que se presentaron al inicio fueron varias. No tengo palabras de agradecimiento para las personas que fueron mi guía y compañía personal y profesional durante el trayecto. “No deje más por menos”, palabras sencillas que nunca olvidare, palabras que marcaron mi ruta y el destino que hoy estoy alcanzando. Sin embargo, dentro de un análisis objetivo es claro que el conseguir mi meta no hubiera sido posible sin el apoyo de muchas personas e instituciones que facilitaron el desarrollo del presente trabajo. Siendo consecuente entonces, es preciso que sea justo y exprese mis agradecimientos.

Mi agradecimiento profundo y eterno mi director de tesis, Ing. Felipe Cisneros E. PhD. y a mi tutora, Ing. Soledad Estrella T. PhD. Su capacidad y experiencia para conducir mis ideas y sus ideas propias han sido claves para el desarrollo del presente trabajo, el cual lo hemos realizado juntos. Su apoyo, confianza y capacidad, enmarcadas en su orientación y rigurosidad, sin duda ha sido elementos fundamentales para mi desarrollo profesional.

Sin duda, un capítulo especial dentro de mí andar se merece quien acertadamente elegí como guía. No me alcanzarían las palabras de agradecimiento que pudiera extenderle por el apoyo, desinteresado y sin limitaciones, que me ha brindado. Estuvo siempre pendiente de que la ruta trazada nunca pierda su final. La predisposición que ha tenido para cuando requería su apoyo ha demostrado su calidad no solo como profesional sino también como persona. Sus vastos conocimientos académicos y profesionales han permitido que mi meta este hoy alcanzada. Muchas gracias Sole....

También quiero agradecer a las instituciones sin las cuales no hubiera sido posible realizar la presente investigación. A la Empresa Publica del Agua (EPA EP) quien financio los estudios a través del Proyecto PACALORI y al Programa para el Manejo del Agua y del Suelo (Promas – Universidad de Cuenca) por el apoyo brindado dentro de todo el proceso de investigación a través de su personal técnico y el uso de sus instalaciones experimentales.
CAPÍTULO 1

Introducción

1.1 Antecedentes y justificación del estudio

En la última década, el Ecuador ha experimentado un importante incremento en el diseño, construcción y re-potenciación de infraestructuras hidráulicas de diversa naturaleza (multipropósito, riego, control de inundaciones, hidroeléctricas, embalses, obras de saneamiento, etc.), que permiten optimizar la gestión integral e integrada de los recursos hídricos. Sin embargo, el vínculo directo que existe entre las estructuras hidráulicas y su medio circundante ha generado nuevos retos a los profesionales de la ingeniería que han tenido que adaptar sus diseños a las restricciones medioambientales que interactúan. Por lo tanto, la estructura hidráulica puede verse afectada en su desempeño y funcionamiento, de ahí que, en algunos casos esto se traduce a costos económicos y sociales cuando las obras están ya construidas.

En este sentido, el diseño hidráulico de este tipo de estructuras se vuelve una actividad compleja para los ingenieros, los cuales enfocan la solución de un problema no solo desde el punto de vista de la teoría tradicional, del razonamiento y de la experiencia profesional como técnicas ingenieriles para el diseño, sino además, investigando a profundidad el comportamiento físico del flujo de agua en dichas estructuras a través de la utilización de modelos hidráulicos o comúnmente conocidos como modelos físicos. La modelación física ha demostrado desarrollar soluciones innovadoras para problemas hidráulicos complejos. Por un lado, la modelación física permite simular varios escenarios sobre varios rangos de operación y combinaciones, a través de los cuales, los ingenieros pueden verificar, validar y mejorar el diseño propuesto de cualquier estructura hidráulica compleja. Por otro lado, la modelación física tiene un papel importante como soporte para las personas no-ingenieriles durante el proceso de "toma de decisiones". Además de estas contribuciones, la modelación física es “experimental” e implica innovación y contribuye a la generación nuevos conocimientos a su alrededor.

Aunque la modelación física se ha utilizado durante varias décadas en todo el mundo, la experiencia ecuatoriana en la materia es limitada a pesar de que muchos proyectos hidráulicos importantes se han desarrollado en los últimos años. Este hecho aumenta la necesidad de expertos en el diseño, construcción y experimentación en
instalaciones de modelación física para mejorar diseños hidráulicos complejos, y además para traducir los resultados en contribuciones I + d + i.

Con este marco, y dado que el Programa para el Manejo del Agua y del Suelo PROMAS - Universidad de Cuenca fue contratado para elaborar los diseños del “Plan de Aprovechamiento y Control de Aguas de la Provincia de Los Ríos” (PACALORI), financiado por la Empresa Pública del Agua (EPA), se vio la necesidad de evaluar, validar y de ser necesario optimizar el comportamiento de estructuras hidráulicas especiales a través estudios en modelos físicos, específicamente los casos de vertederos de tipo abanico y laberinto. Estas estructuras hidráulicas presentan un alto grado de complejidad e incertidumbre en su desempeño hidráulico y funcionamiento debido principalmente a las restricciones identificadas durante la etapa de diseños vinculadas a la gran magnitud de los caudales de diseño condicionados por las características hidrológicas definidas en el proyecto como es el diseño para la avenida máxima probable (AMP). A esto se suman las limitaciones topográficas y las condiciones geológicas de la zona de emplazamiento. Para ello, por medio de los modelos físicos se simulan diferentes escenarios, específicos de cada estructura, a través de diferentes combinaciones de funcionamiento que permitan identificar condiciones hidráulicas adversas para optimizar y garantizar un desempeño y funcionamiento satisfactorio.

La capacidad de descarga de un aliviadero está directamente vinculada con la longitud y forma de la cresta de su vertedero (planta y perfil). Los vertederos en abanico y laberinto se han presentado como una excelente alternativa con relación a los vertederos frontales sobretodo en requerimientos de excedencia elevados, ya que permiten regular los niveles de agua aguas arriba e incrementar considerablemente la capacidad de descarga de agua.

A pesar de que existe una gran cantidad de información publicada sobre métodos de diseño hidráulico de vertederos en laberinto y en menor cantidad sobre vertederos en abanico, puede existir dificultad para alcanzar un diseño óptimo para una ubicación específica, puesto que; las limitaciones de información y las restricciones mencionadas en el anterior párrafo pueden influir en el diseño de las obras complementarias del aliviadero.

El interés de este trabajo es precisamente profundizar en el análisis de los resultados puntuales obtenidos para el proyecto PACALORI y transformar la
información de este estudio de caso en nuevos conocimientos respecto al comportamiento hidráulico de este tipo de estructuras contribuyendo a la generación de nueva teoría para el diseño de las mismas.

1.2 Objetivos del estudio

El objetivo general del estudio es profundizar en el análisis de los resultados puntuales obtenidos para el proyecto PACALORI y transformar la información de este estudio en nuevos conocimientos respecto al comportamiento hidráulico de este tipo de estructuras contribuyendo a la generación de nueva teoría para el diseño de vertederos tipo abanico y laberinto. Para su cumplimiento se han establecido los siguientes objetivos específicos:

1. Realizar un análisis comparativo de las variables características del flujo observadas en los modelos físicos de aliviaderos de tipo abanico y laberinto respecto al diseño tradicional convencional, evaluando el funcionamiento de componentes como: vertederos, canales de aproximación y de descarga, transiciones, cuenco disipador y canales de restitución de cada caso.

2. Realizar un análisis cualitativo del complejo flujo tridimensional que ocurre en aliviaderos de tipo abanico y laberinto y determinar su influencia en el funcionamiento hidráulico de tales estructuras.

3. Optimizar los diseños originales de aliviaderos de tipo abanico y laberinto del proyecto PACALORI, proponiendo mejoras posibles gracias al estudio en modelo físico a escala.

4. Comparar los resultados obtenidos experimentalmente con las guías disponibles en la literatura para el diseño de aliviaderos de tipo abanico y laberinto y contribuir en la definición de nuevos parámetros de diseño de este tipo de estructuras.

1.3 Estructura de la tesis

La tesis se ha estructurado en cinco capítulos. El primer capítulo corresponde a la parte introductora del documento, donde se exponen los antecedentes, la justificación y los objetivos de la investigación. El segundo capítulo contiene toda la información relacionada con la revisión de la información bibliográfica y la actualización del estado del conocimiento (estado del arte) enfocada al interés de la
El capítulo 3 contiene todo lo relacionado con los materiales, instalaciones experimentales y los procedimientos de prueba utilizados dentro de la investigación. En el capítulo 4 se presentan los resultados y la discusión sobre los hallazgos alcanzados dentro de la investigación. Por último, en el capítulo 5 se presentan las conclusiones generales producto de la investigación y recomendaciones para futuras investigaciones.
CAPÍTULO 2
Marco Teórico

2.1 Introducción

En este capítulo se describe el estado del conocimiento relacionado con la aplicación de modelos físicos en la optimización de aliviaderos, específicamente se detallan los criterios de diseño de aliviaderos con vertedero en abanico y vertedero en laberinto, así como los de sus estructuras hidráulicas complementarias (canal de aproximación, canal de descarga y cuenco disipador de energía). Por otro lado, se plantea la modelación física como solución a problemas hidráulicos complejos, se consideran los posibles efectos de escala que se pueden producir en este tipo de estudio y se presentan los criterios requeridos para el estudio en modelo físico de aliviaderos con vertedero en abanico y con vertedero en laberinto.

2.2 Aliviaderos y sus criterios de diseño

Generalmente, las principales estructuras hidráulicas auxiliares que componen los embalses, ya sea para almacenamiento o control, son los aliviaderos. Los aliviaderos tienen la función de evacuar el agua excedente dentro del embalse o desviarl a del sistema de derivación, dependiendo si la presa es de embalse o derivación, hacia un canal o conducción natural o artificial.

Existen varios tipos de aliviaderos, y para su selección se deben considerar un gran número de factores, los mismos que influyen en el tipo y tamaño. Una vez definido el caudal de evacuación correspondiente a la avenida máxima de diseño (o avenida de interés) se procede a definir las dimensiones del aliviadero, para lo cual se considera las características del emplazamiento. Sin embargo, la selección final del aliviadero se rige bajo los criterios de economía, eficiencia y seguridad.

Según USBR (1987), en términos generales los componentes principales de un aliviadero son: 1) Canal de aproximación, que permite conducir el caudal desde el reservorio hacia el aliviadero, cuyas características deben garantizar una adecuada distribución del flujo hacia el vertedero, 2) Estructura de control de caudales, el elemento más utilizado para estos fines son los vertederos. Los vertederos pueden disponer de diferentes geometrías en planta, pudiendo ser estas formas rectas, curvas,
semicirculares o circulares, 3) *Canal de descarga*, conduce el caudal evacuado a través de la estructura de control hacia el cauce natural o de derivación, 4) *Estructura terminal* (o cuenco disipador), permite minimizar el impacto sobre las estructuras complementarias de la presa o aliviadero. El impacto puede generarse debido a la elevada energía por descarga de caudales desde el aliviadero, traduciéndose a altas velocidades que tienen que ser disipadas, y 5) *Canal de salida*, permite retornar adecuadamente el caudal descargado por el aliviadero hacia el cauce, sin alterar sus condiciones naturales.

Los aliviaderos se clasifican dependiendo de varias características. Sin embargo, para el presente estudio se enfoca su clasificación según la geometría en planta de su estructura de control (vertedero). En la mayoría de los aliviaderos, se utilizan diferentes tipos de vertederos como estructura hidráulica de control, cuya capacidad de descarga del vertedero es gobernada principalmente por la longitud del vertedero y la geometría de la cresta. Entre los vertederos más utilizados, dependiendo de las características de emplazamiento y caudal de descarga, podemos destacar a los vertederos frontales, laterales, en arco (Abanico), circulares (Morning Glory), semicirculares, en laberinto, etc. Algunos de ellos se pueden ver en la Figura 2.1.

![Figura 2.1 Tipos de vertederos según su geometría en planta.](image)

Como se mencionó, la selección del tipo de vertedero depende de varios criterios, por lo cual a veces es necesario adaptarlos diferentes tipos de vertedero a las condiciones de caudal de máxima avenida probable, topografía, geología, etc. La mayor parte de los aliviaderos disponen de un vertedero frontal como estructura de regulación (Figura 2.2), No obstante, cuando se requiere evacuar grandes caudales de
excedencia manteniendo bajas cargas de agua sobre la cresta del vertedero, se precisa de una gran longitud de vertedero. Bajo estas condiciones un vertedero frontal resulta inadecuado ya que en la mayoría de casos las características topográficas de la zona de implantación son limitadas y un vertedero frontal requeriría grandes volúmenes de excavación, volviendo inviable la estructura hidráulica desde el punto de vista económico. De ahí se plantea el diseño de vertederos en abanico o en laberinto, los mismos que permiten tener una gran longitud de vertido en menor espacio físico.

Figura 2.2 Vertedero frontal
Fuente: Internet

2.2.1 Aliviaderos con vertedero en abanico

Como ya se explicó, cuando un aliviadero frontal resulta inadecuado, una solución posible es plantear un aliviadero en abanico. Además, estos aliviaderos han sido implementados cuando se dispone de un canal de aproximación ancho y un canal de descarga estrechos, minimizando los problemas de ondas cruzadas en el tramo de transición. Alegret Breña and Martínez González (2008) detallan los siguientes componentes en aliviaderos con vertedero en abanico:

1. Canal de aproximación: Garantiza que la distribución del flujo de aproximación hacia el vertedero sea adecuada desde el punto de vista de velocidades y distribución del flujo, de tal forma que su aproximación sea perpendicular al vertedero sin afectar la eficiencia en la descarga.

2. Vertedero: Se caracteriza por que su configuración en planta es simétrica y está dada por un arco central y dos laterales. Su confirmación vertical está dada por un perfil hidrodinámico cuya superficie coincide con la forma de la superficie inferior de la lámina vertiente,

3. Colchón: Ubicado al pie del vertedero, permite la formación del resalto hidráulico.
4. **Sección de control**: Permite la transición del flujo subcrítico a supercrítico y garantiza el adecuado funcionamiento del vertedero.

5. **Transición**: Permite conducir el flujo desde el vertedero hacia el canal de descarga o rápidas distribuyéndolo uniformemente.

6. **Rápida**: Conduce el flujo comúnmente hacia el cuenco disipador, garantizando condiciones de régimen supercrítico.

7. **Cuenco disipador**: Garantiza adecuadas condiciones del flujo hacia el canal de restitución. Generalmente se utilizan pozos o estanques de disipación.

8. **Canal de restitución**: Permite que el flujo se restituya al cauce natural sin alterar sus condiciones normales.

Continuaciones describen los parámetros de diseño para un vertedero en abanico descritos por Sotelo Avila (1994).

![Diagrama de parámetros hidráulicos del vertedero en abanico](image)

Figura 2.3 Descripción de parámetros hidráulicos del vertedero en abanico
Fuente: Sotelo Avila (1994)

siendo L_1: Longitud de la cresta, R_1: Radio del arco central de la cresta, α: Ángulo total central, R_2: Radio de los arcos laterales de la cresta, β: Ángulo de los arcos laterales, L_2: Ancho de la sección de control b-b, L_3: Distancia de la cresta a la sección de control a lo largo del eje longitudinal, L_4: Distancia de la sección de control al final de la transición, L_5: Ancho del canal de descarga, S: Pendiente inicial de la rápida, en la zona de transición, H: Carga máxima sobre la cresta del vertedero, h: Altura del cimacio, d: Longitud de la transición medida sobre el eje del vertedero, e: Ancho de la transición.

Dados los requerimientos de longitud del vertedero, la carga sobre el vertedero y el caudal de diseño obtenidos a través del estudio de laminación de avenidas, el diseño hidráulico del vertedero consiste en determinar la geometría, el emplazamiento
y las obras complementarias necesarias para un adecuado funcionamiento del mismo. Sotelo Avila (1994) recomienda el procedimiento sobre la cual se sustenta el diseño de este tipo de estructuras hidráulicas, el cual se presenta a continuación:

1. **Diseño geométrico en planta:** Se han establecido criterios en base a relaciones empíricas a través de modelos físicos y los parámetros geométricos de diseño se indicaron en la Figura 2.3. Partiendo de la relación entre la longitud del vertedero y la carga de agua sobre el mismo \((L_1/H)\), se determina la geometría mediante el ábaco presentado en la Figura 2.4.

![Figura 2.4 Relaciones entre elementos geométricos de un vertedero en abanico](image)

Fuente: Sotelo Avila (1994)

Una vez conocidos los valores de \(\alpha, \beta, R_1, L_2, L_3, L_4, L_5\) y \(h\), se debe determinar a través de las ecuaciones (2-1) y (2-2) los parámetros subsecuentes, \(R_2, d\) y \(e\), para definir la geometría completa. Además, se debe verificar que se cumpla con las ecuaciones (2-3), (2-4) y (2-5):

\[
L_1 = \frac{2\pi\beta^\circ}{180^\circ} R_2 + \frac{\pi\alpha^\circ}{180^\circ} R_1 \tag{2-1}
\]

\[
R_2 = \frac{90L_1}{\pi\beta^\circ} - \frac{0.5\alpha^\circ R_1}{\beta^\circ} \tag{2-2}
\]

\[
1 < \alpha/2\beta \tag{2-3}
\]
2.5 < R_2/R_1 < 5.0 \quad (2-4)

1.25 < d/e < 1.75 \quad (2-5)

Generalmente, un vertedero en abanico dispone de un colchón al pie del cimacio tipo Creager, garantizando la formación de un resalto hidráulico. Sin embargo, es preciso verificar que la diferencia de alturas entre el calado conjugado del resalto (y_2) y la altura del cimacio (h) cumpla con la Ecuación (2-7), de no cumplirse; se deberá modificar la altura del cimacio, garantizando la condición de sumergencia.

\[y_2 = \frac{y_1}{2} \left(\sqrt{1 + \frac{8F_r}{1}} - 1 \right) \quad (2-6) \]

\[y_2 - h \leq 0.2H \quad (2-7) \]

2. **Capacidad de descarga:** La capacidad de descarga del vertedero viene dada por:

\[Q = CL(H_e)^{3/2} \quad (2-8) \]

Siendo, Q caudal vertido, C coeficiente de descarga variable, L longitud efectiva del vertedero y H_e altura de la lámina vertiente sobre el vertedero, incluida la altura debida a la velocidad de aproximación.

El coeficiente C es función de algunas variables como el calado de aproximación, la relación entre la forma real y la forma ideal de la corona, la inclinación del paramento de aguas arriba, la interferencia del zampeado aguas abajo, el calado aguas abajo, etc. El coeficiente C se determina a través del ábaco de la Figura 2.5, que relaciona el coeficiente C_o con los valores de P/H_o. Estos coeficientes son válidos únicamente para el caso en que el perfil del vertedero adopte la forma ideal de la lámina vertiente.
2.2.2 Aliviaderos con vertedero en laberinto

Un aliviadero en laberinto se caracteriza por que su vertedero tiene una mayor longitud de cresta que un vertedero lineal, emplazado en el mismo sitio. El propósito de un vertedero en laberinto es incrementar la capacidad de descarga de agua manteniendo la carga de agua sobre la cresta del vertedero restringida a valores relativamente bajos comparados con un vertedero lineal, es decir, alcanzándose niveles de agua bajos. Los vertederos en laberinto son utilizados principalmente en situaciones donde existe una limitación de espacio en el sitio de implantación, sin embargo; también han sido utilizados eficientemente como estructuras de control de aireación, disipadores de energía y estructuras de caída.

Falvey (2003) menciona que existen tres tipos de vertederos en laberinto definidos por la forma de su ciclo en: triangulares, rectangulares y trapezoidales (Figura 2.6).
Figura 2.6 Clasificación de vertederos en laberinto: A) Triangular, B) trapezoidal y C) rectangular. (W= Un ciclo)

Dadas las condiciones del flujo a través de este tipo de vertederos su comportamiento hidráulico es tridimensional, por tal motivo el procedimiento de diseño requiere ser evaluado experimentalmente. Se conoce además que al incrementarse la carga sobre la cresta del vertedero los patrones del flujo están sujetos a cuatro fases básicas (completamente aireada, parcialmente aireada, transicional y suprimida), lo que afecta directamente en el desempeño hidráulico del mismo por la interferencia del flujo con las paredes verticales, inestabilidad en la napa y la variación del coeficiente de descarga a lo largo de toda la cresta.

Por estas razones, los estudios de diseño de aliviaderos con vertedero en laberinto son limitados. No obstante, a continuación se describen algunos de los parámetros geométricos que a criterio de Khatsuria (2004) influencian directamente en el desempeño hidráulico de vertederos en laberinto simétricos con geometría en planta trapezoidal, los mismos que se utilizan por su alta eficiencia y sobretodo facilidad de construcción.
Figura 2.7 Descripción de parámetros hidráulicos del vertedero en laberinto

Siendo, a la semi-lonitud de muros longitudinales; b la longitud de muros verticales; h la carga sobre la cresta del vertedero; h_d el calado aguas abajo; l la longitud de desarrollo de un ciclo ($4a+2b$); n el número de ciclos en planta; W el ancho total del vertedero (nw); l/w el factor magnificación de longitud; L la longitud total del vertedero (nl); p la altura del vertedero; w/p la relación de aspecto vertical; h/p la relación carga a altura del vertedero; α el ángulo del muro; $\alpha_{max} = \sin^{-1}\left(\frac{w/2}{b+2a}\right)$, para vertederos triangulares; Q_L la descarga sobre el vertedero; Q_N la descarga sobre el correspondent vertedero lineal de mismo ancho, altura y calado de sobre flujo; Q_L/Q_N el factor de magnificación del flujo; E el parámetro de efectividad.

Al igual que en el caso de aliviaderos en abanico, un vertedero en laberinto se diseña en función de los requerimientos de longitud del vertedero (L), la carga sobre el vertedero (h) y el caudal de diseño (Q_L) obtenidos a través del estudio de laminación de avenidas. Para este caso se ha establecido adecuado regirse a los criterios de diseño recomendados por Falvey (2003) y Khatsuria (2004).

Los parámetros que influyen el desempeño del vertedero son: la relación entre la carga sobre el vertedero y la altura del vertedero (h/p), factor de incremento de longitud (l/w), el ángulo de los muros verticales con respecto al eje del módulo (α),...
la relación de aspecto vertical (w/p), el número de ciclos (n), el perfil de la cresta del vertedero, la interferencia aguas abajo, el ahogamiento, (h_d/p), la aproximación.

El caudal que pasa sobre un vertedero en laberinto se determina a través de la ecuación (2-9):

$$Q_L = C_L L h^{3/2}$$ (2-9)

Siendo C_L el coeficiente de descarga del vertedero.

Definidos los parámetros iniciales antes mencionados, es preciso determinar el factor de magnificación de caudal (Q_L/Q_N). Q_N está representado por la ecuación (2-10), que corresponde al caudal que pasa sobre un vertedero frontal de la misma longitud, altura y con la misma carga hidráulica.

$$Q_N = C_d W h^{3/2}$$ (2-10)

Siendo,

$$C_d = 1.77 + 0.22 \left(\frac{h}{p} \right)$$ (2-11)

Hay and Taylor (1970) presentó la Figura 2.8 para relacionar el factor de magnificación de caudal (Q_L/Q_N) con los paramentos (h/p) y (l/w), permitiendo alcanzar un diseño preliminar de un vertedero en laberinto. Por otro lado, Darvas (1971) introdujo la ecuación (2-12) para el cálculo de Q_L.

$$Q_L = C_w W h^{3/2}$$ (2-12)

Siendo C_w el coeficiente de descarga referido al ancho del vertedero W y $w/p \leq 2$, $\alpha \geq 0.8\alpha_{max}$. La Figura 2.9 muestra los valores de C_w en función de (l/w) y (h/p), el cual generalmente puede variar entre 3.3 a 14.3 (SI).

De igual modo, (Melo, Ramos, and Magalhães, 2002) presentan la ecuación (2-12) de la siguiente forma:
\[Q_L = u_W W \sqrt{2gh^{3/2}} \] (2-13)

Siendo \(u_w \) el coeficiente de descarga referido al ancho del vertedero \(W \) y \(w/p \leq 2 \), \(\alpha \geq 0.8\alpha_{\text{max}} \). La Figura 2.10 presenta los valores de \(u_w \) en función de \((l/w) \) y \((h/p) \).

Figura 2.8 Factor de incremento de longitud, Hay and Taylor (1970).

Figura 2.9 \(C_w \) vs \((l/w) \), Darvas (1971)
Fuente: (Khatsuria, 2004)
Además, en la Figura 2.11 se indica el ábaco desarrollado por Lux and Hinchliff (1985), para determinar el coeficiente C_w. El caudal del vertedero en laberinto está definido por la ecuación (2-14).

$$Q_L = C_w \left(\frac{w/p}{w/p + k} \right) wh \sqrt{2gh}$$ (2-14)

Donde, k es constante e igual a 0.10 para el caso de una configuración trapezial en planta, C_w el coeficiente de descarga referido al ancho del vertedero W y $2 = w/p \leq 5$, $2 \leq l/w \leq 8$.

En términos generales, y según Khatsuria (2004), los criterios diseño expuestos se enmarcan en el cumplimiento de las siguientes relaciones para alcanzar un adecuado diseño de un vertedero en laberinto.
Además, dentro de las investigaciones más recientes que se han desarrollado sobre vertedero en laberinto existen otros métodos de diseño que han sido establecidos, tales como:

Tullis, Amanian, and Waldron (1995) ha plantea que el coeficiente de descarga de un vertedero en laberinto está determinado por la ecuación (2-15), en la cual \(L_e \) se incorpora como la longitud efectiva del vertedero.

\[
C_d = \frac{3Q}{2\sqrt{2gL_eH_T^{3/2}}}
\]

Tullis et al. (1995) presenta como resultado de su investigación diferentes ecuaciones de regresión para determinar el coeficiente de descarga \(C_d \) en función de \(H_T/P \) (\(H_T/P < 0.90 \)), las cuales se presentan a continuación:

\[
C_d = 0.49 - 0.24(H_T/P) - 1.20(H_T/P)^2 + 2.17(H_T/P)^3 - 1.03(H_T/P)^4; \; \alpha = 6^\circ
\]
\[
C_d = 0.49 + 1.08(H_T/P) - 5.27(H_T/P)^2 + 6.79(H_T/P)^3 - 2.83(H_T/P)^4; \; \alpha = 8^\circ
\]
\[
C_d = 0.49 + 1.06(H_T/P) - 4.43(H_T/P)^2 + 5.18(H_T/P)^3 - 1.97(H_T/P)^4; \; \alpha = 12^\circ
\]
\[
C_d = 0.49 + 1.00(H_T/P) - 3.57(H_T/P)^2 + 3.82(H_T/P)^3 - 1.38(H_T/P)^4; \; \alpha = 15^\circ
\]
\[
C_d = 0.49 + 1.32(H_T/P) - 4.13(H_T/P)^2 + 4.24(H_T/P)^3 - 1.50(H_T/P)^4; \; \alpha = 18^\circ
\]
\[
C_d = 0.49 + 1.51(H_T/P) - 3.83(H_T/P)^2 + 3.40(H_T/P)^3 - 1.05(H_T/P)^4; \; \alpha = 25^\circ
\]
\[
C_d = 0.49 + 1.69(H_T/P) - 4.05(H_T/P)^2 + 3.62(H_T/P)^3 - 1.10(H_T/P)^4; \; \alpha = 35^\circ
\]
\[
C_d = 0.49 + 1.46(H_T/P) - 2.56(H_T/P)^2 + 1.44(H_T/P)^3; H_T/P < 0.7; \; \alpha = 90^\circ
\]

Estas ecuaciones fueron desarrolladas sobre vertederos en laberinto con geometría trapezoidal de cresta cuarto de círculo (\(R = P/12 \)).

Crookston, B. M. (2010) condujo una amplia investigación en modelos físicos de vertederos en laberinto y obtuvo la ecuación (2-25). Los coeficientes \(A, B, C \) y \(D \) se presentan en la Tabla 2-1, para diferentes ángulos \(\alpha \) de muro y validadas para \(0.5 < H_T/P < 0.9 \).

\[
C_d = A \left(H_T \frac{H_T}{P} \right) + D
\]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bilhan, Emiroglu, and Miller (2016) presenta como resultado de su investigación varias ecuaciones para determinar el coeficiente de descarga sobre un vertedero en laberinto. La ecuación (2-25) fue determinada variando el ángulo del muro (α) entre 12° y 37° para $0.1 < H_T/P < 0.9$; los valores de A_1, A_2, A_3, A_4 y A_5 para diferentes ángulos de muro se presentan en la Tabla 2-2.

\[
C_d = A_0 + A_1\left(\frac{H_T}{P}\right) + A_2\left(\frac{H_T}{P}\right)^2 + A_3\left(\frac{H_T}{P}\right)^3 + A_4\left(\frac{H_T}{P}\right)^4 + A_5\left(\frac{H_T}{P}\right)^5
\]

(2-25)

<table>
<thead>
<tr>
<th>Modelo</th>
<th>A_0</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapezoidal, $\alpha = 12^\circ$</td>
<td>0.4731</td>
<td>2.8739</td>
<td>-17.689</td>
<td>40.762</td>
<td>-42.397</td>
</tr>
<tr>
<td>Trapezoidal, $\alpha = 15^\circ$</td>
<td>0.5175</td>
<td>2.5002</td>
<td>-15.434</td>
<td>36.535</td>
<td>-39.287</td>
</tr>
<tr>
<td>Trapezoidal, $\alpha = 18^\circ$</td>
<td>0.6117</td>
<td>1.0411</td>
<td>-7.3097</td>
<td>18.299</td>
<td>-21.211</td>
</tr>
<tr>
<td>Trapezoidal, $\alpha = 23^\circ$</td>
<td>0.6343</td>
<td>1.0339</td>
<td>-5.7465</td>
<td>11.886</td>
<td>-11.710</td>
</tr>
<tr>
<td>Trapezoidal, $\alpha = 30^\circ$</td>
<td>0.6901</td>
<td>0.7188</td>
<td>-5.7036</td>
<td>15.169</td>
<td>-17.800</td>
</tr>
<tr>
<td>Trapezoidal, $\alpha = 37^\circ$</td>
<td>0.687</td>
<td>1.0889</td>
<td>-7.8546</td>
<td>19.953</td>
<td>-22.336</td>
</tr>
</tbody>
</table>

Fuente: (Bilhan et al., 2016)

2.3 Criterios de diseño de las estructuras complementarias a los aliviaderos

Si en el apartado anterior se plantearon los principios de diseño de los vertederos en abanico y laberinto, en este se presentan los criterios de diseño generales de otras estructuras complementarias comunes para los diferentes tipos de vertedero.

2.3.1 Canal de aproximación

Básicamente, con el propósito de reducir las pérdidas de carga en el canal y obtener una distribución uniforme del flujo de aproximación hacia el vertedero es recomendable que la velocidad de entrada sea limitada y, además; las curvas y transiciones existentes en el canal sean lo más suavizadas posibles. Existe varios criterios de diseño para canales abiertos expuestos en cualquier texto de ingeniería de

2.3.2 Canal de descarga

El diseño se fundamenta en los criterios expuestos por la USBR (1987) para el diseño hidráulico de canales con superficie libre. Por lo tanto, en función de la pendiente del canal y la sección transversal se definen tanto la velocidad del flujo como el calado, basándose en el principio de conservación de energía representado a través de la Figura 2.12 y Ecuación (2-26).

\[
\Delta Z + d_1 + h_{v2} = d_2 + h_{v2} + \Delta h_L
\]

(2-26)

Figura 2.12 Teorema de Bernoulli para flujo en canales abiertos
Fuente: (USBR, 1987)

Generalmente, el perfil de un canal de descarga comprende de tramos rectos unidos con curvas verticales que se adaptan a las condiciones topográficas y geológicas del terreno. Las curvas verticales deben ser convexas, lo suficientemente planas y tener radios suficientemente grandes, para garantizar regímenes de flujo favorables, presiones positivas y presiones dinámicas bajas. En este sentido, según USBR (1987) la curvatura debe aproximarse a:

\[-y = x \tan \theta + \frac{x^2}{K[4(d + h_v)\cos^2 \theta]}\]

(2-27)

Siendo \(x\), y las coordenadas horizontal y vertical medidas desde el inicio de la curva; \(\theta\) ángulo de inclinación de la solera del canal aguas arriba de la curva; \((d + h_v)\) la
energía específica disponible al inicio de la curvatura; \(g \) aceleración de la gravedad; y \(K \geq 1.50 \).

Por otro lado, USBR (1987) recomienda que para las curvas cóncavas el radio de curvatura no sea menor a \(10d \), en la cual \(d \) es la profundidad de flujo al inicio de la curvatura. Sin embargo, se puede acoplar radios mayores a éste.

Además, dado que los canales abiertos donde la velocidad supercrítica y la energía específica generan ondas, salpicaduras, burbujas y espumas es necesario incrementar la altura de los cajeros laterales del canal para evitar desbordamiento (USBR, 1987).

\[
Bordo\ libre = 0.61 + 0.045v^2\sqrt{d} \tag{2-28}
\]

Siendo \(d \) la profundidad del flujo; y \(v \) la velocidad del flujo.

2.3.3 Cuenco disipador (Disipador de energía)

El caudal evacuado a través de un aliviadero tiene una gran energía cinética y al ser descargado directamente hacia un canal aguas abajo podría generar socavación sobre el fondo del mismo. Cuando la socavación no es controlada adecuadamente puede afectar tanto a la presa como al aliviadero por efecto de “socavación regresiva” en el fondo del canal. De manera que, los cuencos disipadores son estructuras hidráulicas requeridas en aliviaderos para reducir el exceso de energía cinética del flujo (disipación de energía) que pasa sobre un aliviadero. Según P. Novak, Moffat, Nalluri, and Narayanan (2007), la disipación de energía está directamente vinculada al diseño del aliviadero, principalmente con la selección del caudal específico, la diferencia de niveles de agua aguas arriba y aguas abajo, y las condiciones aguas abajo.

A pesar de que el diseño de un cuenco disipador depende principalmente de la velocidad inicial del flujo y del número inicial de Froude (Panwar and Tiwari, 2014), el caudal evacuado por un vertedero puede llegar al cuenco disipador en dos estados: subcrítico o supercrítico. Con flujo subcrítico las ondas viajan hacia aguas arriba y con flujo supercrítico las ondas viajan hacia aguas abajo. Por lo cual, cuando se produce un cambio abrupto en la superficie del agua cuando el flujo viaja a régimen supercrítico se genera el resalto hidráulico, siendo este fenómeno hidráulico un método comúnmente utilizado para forzar la disipación de energía.
En consecuencia, el cuenco disipador permite reducir la velocidad del flujo a límites aceptables controlando la socavación en el canal de restitución y proporcionando un régimen de flujo estable (subcrítico). No obstante, existe una gran variedad de diseños que han sido establecidos en base a criterios económicos y requerimientos específicos en términos de longitud, nivel de agua, socavación y cavitation.

La USBR (United States Bureau Reclamation) ha desarrollado varios tipos de diseños estandarizados de cuencos disipadores producto de varias investigaciones los cuales han sido claramente clasificados como Tipo I, II, III, IV, V, VI, VII, VIII, IX y X. Cada tipo de cuenco disipador tiene diferentes características de aplicación para las diferentes formas de resalto hidráulico y el número de Froude del flujo de ingreso al cuenco (Peterka, 1984). Se presentan algunos ejemplos en la Figura 2.13.

Para el caso de los cuencos disipadores, el borde libre se considera debido a las fluctuaciones provocadas por el resalto hidráulico que se forma, de manera que el borde libre queda definido por:

\[\text{Bordo libre} = 0.2(d_2 - d_1) \] \hspace{1cm} (2-29)

Siendo \(d_1 \) el calado contraído; y \(d_2 \) el calado conjugado del resalto hidráulico.

Figura 2.13 Cuencos disipador: a) Tipo II; b) Tipo III; c) Tipo IV; d) Tipo V
Fuente: (Peterka, 1984)
2.3.4 Canal de restitución

Son canales de baja pendiente generalmente con régimen de flujo subcrítico y su configuración geométrica (en planta) se realiza sobre la base de criterios de orden topográfico (uso de canales naturales existentes, movimiento de tierras mínimo, etc.). Además, es recomendable tener tramos rectos y curvas suaves con la finalidad de evitar alteraciones en el flujo (generación de ondas cruzadas) y socavación en la margen convexa de una curva muy cerrada por efecto del flujo preferencial.

Los radios de curvatura de las distintas curvas se verificarán sobre la base del cálculo del radio mínimo de curvatura, conforme a la siguiente expresión:

\[
R_{\text{min}} = \frac{4V^2 b}{gd}
\]

Siendo \(V \) es la velocidad media del flujo; \(b \) el ancho del canal; \(g \) la aceleración de la gravedad y; \(d \) es la profundidad del flujo.

2.4 Modelación física en hidráulica

La modelación física ha sufrido un importante crecimiento al largo de su historia. Según Pavel Novak, Guinot, Jeffrey, and Reeve (2010), la modelación física surge en Estados Unidos de América en el US Bureau of Reclamation (USBR) con la construcción importantes estructuras hidráulicas y para dar solución a problemas hidráulicos complejos.

A pesar de que, actualmente en ingeniería hidráulica se emplean técnicas computacionales (CFD, Computational Fluid Dynamics) por sus ventajas principalmente en términos de costo y tiempo de ejecución. tal herramienta necesita de un fuerte proceso de evaluación y validación (Savage, Frizell, and Crowder, 2004). Sin embargo, los modelos físicos aún presentan importantes ventajas sobre los modelos computacionales al no tener limitaciones en su capacidad de cálculo, permiten visualizar e interpretar fenómenos hidráulicos de gran complejidad, tener una mejor aproximación a los procesos físicos y la interacción directa con el modelo para dar soluciones a problemas hidráulicos complejos (Balairón Pérez, López, Morán, Ramos, and Toledo, 2014). Así, por ejemplo, el uso de modelos físicos permite analizar las condiciones generales de operación y caracterización de patrones
de flujo sobre estructuras hidráulicas, siendo posible mejorar la geometría de las estructuras y lograr un rendimiento hidráulico óptimo con soluciones de bajo costo.

Así mismo, dado que los flujos de agua en las estructuras hidráulicas son altamente turbulentos y, en la mayoría de los casos, están asociados a una importante entrada de aire, su simulación matemática es bastante compleja. Por lo tanto, el análisis de comportamiento de flujo en estructuras hidráulicas basado en modelos físicos se considera un enfoque bastante conveniente, su uso está claramente justificado, más aún, cuando se trata de proyectos que implican importes de inversión importantes. Desde el punto de vista del diseño, estos estudios permiten una adecuada validación y optimización de las soluciones del proyecto.

No obstante, el conocimiento de las leyes físicas, el juicio y la experiencia son importantes para seleccionar el método apropiado para un problema de modelación. La rigidización de criterios basados únicamente en la teoría tiende a rechazar la escala seleccionada en un modelo físico y, en algunos casos, la experimentación en un modelo físico de un problema particular puede generar un menor grado de confianza de los resultados alcanzados. Sin embargo, aun en esos casos no necesariamente se puede descartar el uso del modelo físico, sino más bien asumir los resultados con un criterio más cuidadoso en la interpretación de los datos.

En consecuencia, es preciso remarcar, la vigencia plena que tienen los modelos físicos tanto para enfrentarse a nuevos problemas de ingeniería hidráulica como de apoyo a modelos computacionales hacen que los laboratorios de hidráulica se mantengan vigentes en el mundo.

2.4.1 Criterios de similitud

Un modelo físico pretende representar una similitud completa de un prototipo si satisface con los criterios de similitud geométrica, similitud cinemática y similitud dinámica. Se ha referenciado en Ettema, Arndt, Roberts, and Wahl (2000) para presentar las siguientes relaciones, donde los subíndices r, m y p representan la relación de escala, modelo y prototipo, respectivamente:

La similitud geométrica requiere similitud en forma. El principal parámetro para garantizar esta similitud es la relación de longitud (L), área (A) y volumen (\forall). Estos dos últimas como consecuencia de la primera.
La similitud cinemática requiere que además de la similitud geométrica, las relaciones de velocidades características sean las mismas en el modelo y prototipo.

\[
l_r = \frac{L_p}{L_m} \quad (2-31)
\]

\[
A_r = L_r^2 \quad (2-32)
\]

\[
V_r = L_r^3 \quad (2-33)
\]

\[
t_r = \frac{t_p}{t_m} \quad (2-34)
\]

\[
v_r = \frac{L_r}{t_r} \quad (2-35)
\]

\[
a_r = \frac{v_r}{t_r} = \frac{L_r}{t_r^2} \quad (2-36)
\]

Siendo el tiempo \((t)\), la velocidad \((v)\) y la aceleración \((a)\) las relaciones para escalamiento.

La similitud dinámica implica que las relaciones de fuerzas sean iguales en modelo y prototipo. Además que, automáticamente se cumple con la similitud cinemática (Ettema et al., 2000).

\[
F_r = M_r a_r \quad (2-37)
\]

\[
M_r = \rho_r V_r = \rho_r L_r^3 \quad (2-38)
\]

Entonces, la segunda ley de Newton puede expresarse a través de la siguiente expresión, la cual es significativa para cualquier tipo de flujo excepto para el flujo laminar uniforme:
Siendo ρ la densidad del fluido (agua). Además de este parámetro, existen otros que están vinculados con la similitud dinámica tales como: gravedad, presión, tensión superficial, viscosidad y elasticidad los cuales se representan en las siguientes ecuaciones:

\[F_g = \gamma \mathcal{V} \quad \text{Gravedad} \quad (2-40) \]

\[F_p = pA \quad \text{Presión} \quad (2-41) \]

\[F_\sigma = \sigma L \quad \text{Tensión superficial} \quad (2-42) \]

\[F_\nu = \mu \frac{dv}{dy} A \quad \text{Viscosidad} \quad (2-43) \]

\[F_E = E_v A \quad \text{Elasticidad} \quad (2-44) \]

Siendo σ la tensión superficial, μ la viscosidad dinámica, dv/dA es el gradiente de velocidad, y E_v es el módulo de elasticidad.

De las relaciones anteriormente establecidas y aplicando el teorema de Vaschy-Buckingham (teorema π) se han establecido parámetros adimensionales que satisfacen la condición de similitud en modelación física (Streeter, Wylie, and Bedford, 2000). Estos parámetros son relevantes para condiciones de flujo libre (L, representa una longitud referencial) y son:

\[Re = \frac{\nu L}{v} \quad \text{Número de Reynolds} \quad (2-45) \]

\[Fr = \frac{\nu}{\sqrt{gL}} \quad \text{Número de Froude} \quad (2-46) \]
En modelación física no es posible cumplir simultáneamente con los criterios de similitud de Froude y Reynolds. Por ejemplo, si se cumple que $F_{Fr_{m}} = F_{Fr_{p}}$, entonces la relación $Re_{m} \neq Re_{p}$. Sin embargo, se debe tener claro que el número de Reynolds representa un importante criterio de similitud cuando se trata de flujo con y sin superficie libre. Mientras que, el número de Froude es el principal parámetro cuando se trata de flujo en superficie libre. Además, cuando se analizan los efectos de tensión superficial el parámetro más importante de análisis es el número de Weber.

En consecuencia, para el análisis de estructuras cuyo funcionamiento es a flujo libre se utiliza principalmente el criterio de similitud de Froude, donde la relación entre las fuerzas de inercia y gravedad se supone igual en modelo y prototipo. De ahí, se presenta las siguientes relaciones subsecuentes:

$$t_{r} = \sqrt{\frac{L_{r}}{g}}$$ \hspace{1cm} \text{Tiempo} \hspace{1cm} (2-48)$$

$$v_{r} = \sqrt{\frac{L_{r}}{g}}$$ \hspace{1cm} \text{Velocidad} \hspace{1cm} (2-49)$$

$$Q_{r} = v_{r}L_{r}^{2} = L_{r}^{5/2}$$ \hspace{1cm} \text{Caudal} \hspace{1cm} (2-50)$$

2.4.2 Efectos de escala

La incorrecta aplicación de los criterios de similitud genera discrepancias entre los resultados alcanzados en modelo físico y los observados en prototipo. Según Ettema et al. (2000), Pavel Novak et al. (2010) y Heller (2011), estas discrepancias pueden ser atribuidas por efectos del modelo, efectos de escala y efectos de mediciones, cuya consecuencia es la no similitud modelo-prototipo. Por lo cual, es preciso asumir criterios de similitud adecuados de manera que los efectos del modelo, de escala y de mediciones, presentados tanto cualitativamente como cuantitativamente, puedan ser despreciados. Los efectos de escala principalmente están presentes cuando se trata con modelos físicos a pequeña escala, donde los efectos de escala debido a la viscosidad y tensión superficial se incrementan (Canno
Ferreira Fais, Maria and Borri Genovez, 2008). Los efectos del modelo y de medición representan una fuente adicional de discrepancia en la similitud modelo-prototipo por lo que también deben ser considerados (Pavel Novak et al., 2010).

En este contexto, se han conducido varias investigaciones que permiten identificar la influencia de los efectos de escala sobre una gran variedad de fenómenos hidráulicos típicos considerando modelos diseñados sobre la base del criterio de similitud de Froude y las restricciones subsecuentes de Reynolds y Weber. Sin embargo, las restricciones planteadas no han sido aún bien definidas o entendidas en su totalidad.

Por un lado, los modelos físicos de estructuras hidráulicas a flujo libre fundamentados en el criterio de similitud de Froude son válidos cuando los efectos de viscosidad y tensión superficial son tan pequeños que pueden ser despreciados. Por ejemplo, Canno Ferreira Fais, Maria and Borri Genovez (2008) recomienda que, en vertederos, el número de Reynolds y Weber deben ser mayores que 10^5 y 500, respectivamente. Por otro lado, Ettema et al. (2000) establece que los efectos de tensión superficial pueden ser despreciados si el número de Weber es mayor que 100.

Pfister and Chanson (2012) menciona que para considerar los efectos de escala por tensión superficial, en modelos físicos en ingeniería hidráulica, el número de Reynolds mínimo debe variar entre 2 a 3x10^5 y un número mínimo de Weber de 140. Considerando una de estas limitaciones, la otra estaría implícita. Saneie, Sheikh Kazemi, and Azhday Moghaddam (2016) menciona que, utilizando una familia de modelos físicos (1:100, 1:75 y 1:50) de un vertedero de cresta “Ogee” con arco en planta y muros laterales convergentes, la influencia de la viscosidad y tensión superficial sobre el coeficiente de descarga es mínima para los números de Reynolds y Weber de 3.1 x 10^4 y 270, respectivamente. Por lo tanto, es posible despreciar los efectos de escala y los resultados pueden ser extrapolados a prototipo. Así mismo, para el caso de flujos bifásicos, donde existe la interacción agua-aire (resalto hidráulico), Pfister and Chanson (2012) indican que para limitar los efectos de escala el número de Reynolds debe estar entre 2 a 3x10^5, con lo cual se evitarían efectos de escala en términos de concentración de aire para números de Froude que varían de 5 a 15.

Como menciona Erpicum et al. (2016), existen varios criterios expuestos por Ettema et al. (2000), Pavel Novak et al. (2010), Heller (2011), Castro-Orgaz y
Hager (2014) y Pfister, Battisacco, Cesare, and Schleiss (2013) que limitan la carga sobre vertederos con diferente geometría, con el propósito de evitar efectos de escala sobre las relaciones carga sobre el vertedero vs caudal de descarga (H-Q). Adicionalmente, Heller (2011) recomienda tanto criterios límite para despreciar efectos de escala como escalas típicas de modelos físicos en ingeniería hidráulica relacionados con una amplia variedad de fenómenos de flujo hidráulico.

2.4.3 Investigación en aliviaderos con vertedero Abanico y Laberinto a través de modelos físicos

Las investigaciones realizadas sobre vertederos en abanico o arco axial a través de modelos físicos son limitadas. El enfoque principal de las investigaciones se ha centrado en evaluar la eficiencia del vertedero a través de la determinación del coeficiente de descarga, ya que el flujo de aproximación varía en comparación con un vertedero frontal dadas ciertas características específicas de cada caso de estudio.

En contraste, las investigaciones sobre vertederos en laberinto han sido desarrolladas con mayor énfasis por las características particulares que tiene su funcionamiento. Se han enfocado principalmente en investigar los fenómenos que influyen sobre la capacidad de descarga, optimizar la geometría en planta vinculadas al flujo de aproximación y analizar la interferencia de las láminas vertientes durante la descarga.

En la Tabla 2-3 se muestra un resumen de las investigaciones disponibles que han sido realizadas a través de modelación física y relacionadas tanto con vertederos en abanico o arco axial como con vertederos en laberinto o de “tecla de piano”, las mismas que han sido utilizadas dentro de la presente investigación.

<table>
<thead>
<tr>
<th>No.</th>
<th>Investigación</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An integrated study of the fan spillway</td>
<td>(Alegret-Breña and Martínez-González, 2010)</td>
</tr>
<tr>
<td>2</td>
<td>Investigación exhaustiva del aliviadero de abanico</td>
<td>(Alegret Breña and Martínez González, 2008)</td>
</tr>
<tr>
<td>3</td>
<td>A New Approach to Analyze the Flow over Sharp Crested Curved Plan form Weirs</td>
<td>(Kumar, Ahmad, Mansoor, and Himanshu, 2013)</td>
</tr>
<tr>
<td>4</td>
<td>Discharge Characteristics of Sharp Crested Weir of Curved Plan-form</td>
<td>(Kumar, Ahmad, Mansoor, and Himanshu, 2012)</td>
</tr>
<tr>
<td></td>
<td>The effect of approach channels on the discharge coefficient of ogee spillway in the axial arc condition with convergent sidewalls</td>
<td>(Sheikhkazemi and Saneie, 2014)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>Experimentally determination of discharge coefficients of Ogee spillway under axial arc condition with convergent lateral walls</td>
<td>(Sheikhkazemi, Saneie, and Azhdary Moghaddam, 2016)</td>
</tr>
<tr>
<td>7</td>
<td>Evaluation and Analysis of Flow over Arced Weirs Using Traditional and Response Surface Methodologies</td>
<td>(Sangsefidi, Mehraein, Ghodsian, and Motalebizadeh, 2017)</td>
</tr>
</tbody>
</table>

Vertederos en Laberinto

<table>
<thead>
<tr>
<th></th>
<th>Experimental Investigation of Discharge Capacity of Labyrinth Weirs with and without Nappe Breakers</th>
<th>(Bilhan et al., 2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Aliviaderos en Laberinto. Presa de María Cristina.</td>
<td>(Cordero Page, Elviro García, and Granell Ninot, 2007)</td>
</tr>
<tr>
<td>3</td>
<td>Labyrinth Weirs : Nappe Interference and Local Submergence</td>
<td>(B. M. Crookston and Tullis, 2013c)</td>
</tr>
<tr>
<td>4</td>
<td>Hydraulic Design and Analysis of Labyrinth Weirs. I : Discharge Relationships</td>
<td>(B. M. Crookston and Tullis, 2013a)</td>
</tr>
<tr>
<td>5</td>
<td>Hydraulic characteristics of labyrinth weirs</td>
<td>(B. M. Crookston and Tullis, 2011)</td>
</tr>
<tr>
<td>6</td>
<td>Hydraulic Design and Analysis of Labyrinth Weirs. II: Nappe Aeration, Instability, and Vibration</td>
<td>(B. M. Crookston and Tullis, 2013b)</td>
</tr>
<tr>
<td>7</td>
<td>Labyrinth Weirs</td>
<td>(B. M. Crookston, 2010)</td>
</tr>
<tr>
<td>8</td>
<td>The Design and Analysis of Labyrinth Weirs</td>
<td>(Brian Mark Crookston and Tullis, 2011)</td>
</tr>
<tr>
<td>9</td>
<td>Discharge Capacity of Labyrinth Side Weir Located on a Straight Channel</td>
<td>(Emiroglu, Kaya, and Agaccioglu, 2010)</td>
</tr>
<tr>
<td>10</td>
<td>Experimental Studies on Flow over Labyrinth Weir</td>
<td>(Khode, Tembhurkar, Porey, and Ingle, 2012)</td>
</tr>
<tr>
<td>11</td>
<td>Vertedores de laberinto</td>
<td>(Lobaina Fernández, Pardo Gómez, and Alegret Breña, 2016)</td>
</tr>
<tr>
<td>12</td>
<td>Discussion on “Boardman labyrinth crest spillway.”</td>
<td>(Lux, 1987)</td>
</tr>
<tr>
<td>13</td>
<td>Los aliviaderos tipo laberinto. Un nuevo enfoque para su cálculo hidráulico</td>
<td>(Granell Ninot and Toledo Municio, 2010)</td>
</tr>
<tr>
<td>14</td>
<td>Experimental study of hydraulically efficient piano key weir configuration</td>
<td>(Singhal, Sharma, and Ojha, 2011)</td>
</tr>
<tr>
<td>15</td>
<td>The Hydraulic Design of an Arced Labyrinth Weir at Isabella Dam</td>
<td>(Thompson, Ebner, and Tullis, 2016)</td>
</tr>
<tr>
<td>16</td>
<td>Design of Labyrinth Spillways</td>
<td>(Tullis et al., 1995)</td>
</tr>
</tbody>
</table>
CAPÍTULO 3
Materiales y Métodos

3.1 Introducción

En este capítulo se describe en líneas generales el proyecto PACALORI que ha servido como base para el desarrollo de la presente tesis, concretamente se presenta información referente a los diferentes aliviaderos proyectados y se especifican los detalles de los aliviaderos con vertedero en abanico y vertedero en laberinto utilizados como estudios de caso de la presente investigación. Por otro lado, se detallan las instalaciones experimentales dedicadas a la modelación física, se detallan los criterios del diseño experimental empleado, así como los instrumentos de medida utilizados.

3.2 Introducción al caso de estudio: Proyecto PACALORI

La cuenca del Río Guayas, si bien es cierto tiene abundante recurso agua, no es menos cierto que existe un desequilibrio natural en su distribución tanto en el tiempo como en el espacio, ya que; en el período de lluvias, que ocurre entre enero a mayo produce 80% de la producción anual y en el período de julio a diciembre el 20% restante. Además, el escurrimiento del agua se concentra en el período húmedo produciendo grandes inundaciones y disminuye en el período seco causando sequías extremas.

Bajo las circunstancias anotadas, la EPA-SENAWA contrata con el PROMAS-Universidad de Cuenca, la consultoría para la realización del proyecto PACALORI (Plan de Aprovechamiento y Control de Agua en la provincia de Los Ríos) con el fin de tomar acciones que permitan regular el potencial hídrico en la cuenca del Río Guayas, a efecto de corregir y subsanar los problemas de sequías e inundaciones, y garantizar un acceso equitativo al agua, esto se conseguirá en la medida en que se logre disminuir el desequilibrio temporal y espacial de la disponibilidad de agua, a través de la implementación de grandes obras de infraestructura hidráulica, que permitan almacenar el agua durante la época de lluvias y usarla durante la época seca.

El proyecto se ubica en el centro de la Provincia de Los Ríos, en la cuenca media del Río Guayas, delimitada por el río Calabí, y el río Macul. Su área se estima en 178.000 ha y está constituida por dos zonas perfectamente definidas, que son la zona Oeste a ser servida desde el río Quevedo, a lo largo del río Macul, con un área aproximada de 60%; y la zona
Este a ser servida desde el río Calabí con un área aproximada de 40%, de las cuales el Proyecto PACALORI definió para riego el valor de 103.876 ha.

En los diseños definitivos del proyecto PACALORI el proyecto consta de dos trasvases (Promas-Universidad de Cuenca, 2017e): el Trasvase Quevedo-Macul-Mocache con 7 presas y el Trasvase Calabí-Lechugal-Chojampe con 6 presas (Figura 3.2 y Figura 3.3).
Figura 3.2 Embalses y conducciones del Proyecto PACALORI

Fuente: (Promas-Universidad de Cuenca, 2017e)
En la Tabla 3-1 y Tabla 3-2 se presenta un resumen de las características del vertedero implementado para cada presa de los dos trasvases. Entre los varios componentes técnicos del proyecto, se encuentra el diseño de los aliviaderos de las 13 presas, los mismos que se
configuran para evacuar el caudal de la avenida máxima probable laminado (AMP); de acuerdo a esto y a las condiciones topográficas de cada sitio, se consideró adecuada la implementación de vertederos frontales de cimacio tipo Creager, vertedero en rápida, vertederos en laberinto y vertedero tipo abanico, de acuerdo a lo detallado en las mencionadas tablas.

<table>
<thead>
<tr>
<th>Presa</th>
<th>Tipo de Vertedero</th>
<th>Longitud</th>
<th>Carga de Agua</th>
<th>Caudal de Diseño (AMP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macul 1</td>
<td>X</td>
<td>50</td>
<td>2.66</td>
<td>918.17</td>
</tr>
<tr>
<td>Maculillo</td>
<td>X</td>
<td>20</td>
<td>2.10</td>
<td>128.70</td>
</tr>
<tr>
<td>Macul 2</td>
<td>X</td>
<td>50</td>
<td>2.52</td>
<td>1017.16</td>
</tr>
<tr>
<td>Mocache</td>
<td>X</td>
<td>10</td>
<td>1.29</td>
<td>30.94</td>
</tr>
<tr>
<td>Garzas</td>
<td>X</td>
<td>10</td>
<td>1.49</td>
<td>38.69</td>
</tr>
<tr>
<td>Mangas Saibas</td>
<td>X</td>
<td>30</td>
<td>1.50</td>
<td>117.14</td>
</tr>
<tr>
<td>La Angostura</td>
<td>X</td>
<td>20</td>
<td>1.42</td>
<td>71.39</td>
</tr>
</tbody>
</table>

Fuente: Promas (2017)

<table>
<thead>
<tr>
<th>Presa</th>
<th>Tipo de Vertedero</th>
<th>Longitud</th>
<th>Carga de Agua</th>
<th>Caudal de Diseño (AMP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lechugal 2</td>
<td>X</td>
<td>65</td>
<td>1.78</td>
<td>326.44</td>
</tr>
<tr>
<td>Aguacatal</td>
<td>x</td>
<td>20</td>
<td>1.51</td>
<td>68.42</td>
</tr>
<tr>
<td>Puebloviejo</td>
<td>x</td>
<td>30</td>
<td>0.95</td>
<td>59.22</td>
</tr>
<tr>
<td>Chojampe 2</td>
<td>x</td>
<td>10</td>
<td>1.63</td>
<td>44.14</td>
</tr>
<tr>
<td>Chojampe</td>
<td>x</td>
<td>25</td>
<td>1.73</td>
<td>120.99</td>
</tr>
<tr>
<td>Estero Lechugal</td>
<td>x</td>
<td>15</td>
<td>2.08</td>
<td>141.25</td>
</tr>
</tbody>
</table>

Fuente: Promas (2017)

En relación al caudal de diseño de las obras de evacuación de excesos, se ha considerado la ubicación de las presas, aguas arriba de poblaciones y en serie, para asumir el máximo de precauciones. Por esta razón y como requerimiento de la entidad contratante, la estimación de caudales de creciente y laminación se realizó con la metodología de la Avenida Máxima Probable (AMP), basada en la estimación de la Precipitación Máxima Probable (PMP), la misma que se detalla en los estudios de climatología e hidrología del proyecto PACALORI (Promas-Universidad de Cuenca, 2017f). Debido a la exigencia de este
requerimiento a nivel de caudales de diseño que planteó la implementación de dos aliviaderos en con vertedero en laberinto y un aliviadero con vertedero en abanico, para las estructuras de mayor demanda. Por otro lado, del estudio de climatología e hidrología del proyecto PACALORI, se han obtenido una gama de caudales para diferentes periodos de retorno (Tr) en cada una de las estructuras hidráulicas de interés (Tabla 3-3) que también serán considerados en el análisis de las estructuras objeto de esta tesis.

![Imagen](image.png)

<table>
<thead>
<tr>
<th>Aliviadero</th>
<th>Tipo de vertedero</th>
<th>AMP</th>
<th>Tr=100</th>
<th>Tr=50</th>
<th>Tr=25</th>
<th>Tr=10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lechugal 2</td>
<td>Abanico</td>
<td>326.45</td>
<td>174.63</td>
<td>-</td>
<td>-</td>
<td>121.10</td>
</tr>
<tr>
<td>Macul 1</td>
<td>Laberinto</td>
<td>918.17</td>
<td>264.23</td>
<td>236.75</td>
<td>208.21</td>
<td>-</td>
</tr>
<tr>
<td>Macul 2</td>
<td>Laberinto</td>
<td>1017.17</td>
<td>341.67</td>
<td>306.85</td>
<td>272.22</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: (Promas-Universidad de Cuenca, 2017f)

Con el propósito de evaluar el desempeño hidráulico de las estructuras hidráulicas más complejas en el proyecto PACALORI, también se plantea el diseño, construcción y estudio experimental de modelos físicos a escala no distorsionada conforme a los diseños preestablecidos, para efectos de ajustar y mejorar la configuración final de las obras. Dichas estructuras experimentales han servido de base para realizar la presente tesis, que tiene los objetivos claramente definidos en la sección 1.2 de este documento.

3.2.1 **Aliviadero con vertedero en abanico de la presa Lechugal 2**

El aliviadero con vertedero en abanico de la presa Lechugal 2, cuyo esquema general se presenta en la Figura 3.4, se diseñó considerando principalmente la longitud mínima requerida para evacuar el caudal de máxima avenida probable y las características topográficas del sitio de cierre (Promas-Universidad de Cuenca, 2017a). De ahí que, se implementó un vertedero en abanico de cimacio tipo Creager bajo las recomendaciones dadas por Sotelo Avila (1994), las cuales consisten en determinar la geometría del vertedero en planta asumiendo un perfil longitudinal similar a un vertedero convencional con perfil Creager. Como se muestra en la Tabla 3-4, la capacidad máxima de descarga del vertedero es de 326.44 m³/s (Caudal máximo de diseño AMP). El vertedero en abanico, cuyo paramento vertical aguas arriba es de 2 m con respecto al fondo, está configurado por tres arcos semicirculares cuya longitud total es de 65 m medida en el eje de la cresta. El caudal es conducido hacia el vertedero a través de un canal de aproximación de 65 m de ancho y pendiente horizontal, y descargado sobre el perfil hidrodinámico hacia un colchón con pendiente horizontal de manera que se genere el resalto hidráulico al pie del vertedero. Mediante una transición de arcos convergentes (contracción) se conduce el caudal evacuado...
hacia un canal de descarga, de sección constante (17 m de ancho) y de régimen rápido (pendiente variable desde 12.6, 3.2 y 26.6%). Finalmente, el caudal es descargado en un cuenco disipador de 22 m de ancho y conducido a través de un canal de restitución hacia cauce natural.

<table>
<thead>
<tr>
<th>Tabla 3-4 Parámetros de diseño del vertedero en abanico – Lechugal 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
</tr>
<tr>
<td>Caudal de diseño</td>
</tr>
<tr>
<td>Carga de agua máxima sobre el vertedero</td>
</tr>
<tr>
<td>Longitud de la cresta del vertedero</td>
</tr>
<tr>
<td>Relación Longitud – Carga</td>
</tr>
<tr>
<td>Caudal unitario</td>
</tr>
<tr>
<td>Ángulo total del arco central</td>
</tr>
<tr>
<td>Ángulo de los arcos laterales</td>
</tr>
<tr>
<td>Radio del arco central de la cresta</td>
</tr>
<tr>
<td>Radio de los arcos laterales de la cresta</td>
</tr>
<tr>
<td>Ancho de la sección de control b – b</td>
</tr>
<tr>
<td>Distancia de la cresta a la sección de control</td>
</tr>
<tr>
<td>Distancia de la sección de control al final de la transición</td>
</tr>
<tr>
<td>Ancho del canal de descarga</td>
</tr>
<tr>
<td>Altura del cimacio</td>
</tr>
<tr>
<td>Longitud de la transición medida sobre el eje del vertedero</td>
</tr>
<tr>
<td>Ancho de la transición</td>
</tr>
</tbody>
</table>

Fuente: (Promas-Universidad de Cuenca, 2017a)

3.2.2 Aliviadero con vertedero en laberinto de la presa Macul 1 y Macul 2

La selección del tipo de vertedero, en ambos casos, se realizó considerando la longitud de vertedero requerida (longitud óptima) y las características topográficas del sitio de cierre, básicamente (Promas-Universidad de Cuenca, 2017a). De acuerdo con ello, para el presente caso se considera adecuado implementar un vertedero tipo laberinto, dado que el requerimiento de longitud efectiva de vertedero es grande y el espacio topográfico disponible es limitado (Promas-Universidad de Cuenca, 2017a). En términos generales, dicho vertedero es una estructura uniforme que se construye por medio de una serie de trapecios. Esta geometría permite incrementar la longitud de vertedero en un determinado espacio disponible, con el fin de aumentar la capacidad de evacuación con respecto a un vertedero recto convencional ubicado en el mismo espacio y con la misma carga hidráulica.

Por un lado, el aliviadero con vertedero en laberinto de la presa Macul 1 (Figura 3.5) se diseñó considerando la avenida máxima probable. El aliviadero está constituido por un
canal de aproximación de 50 m de ancho, que conduce el caudal hacia un vertedero en
laberinto cuya configuración en planta es trapezoidal. El vertedero tiene una altura de
paramento de 4.50 m y una longitud efectiva de 100 m que permitirá evacuar un caudal
máximo de diseño de 918.17 m³/s (Tabla 3-5). Aguas abajo del vertedero se configuró un
cuenco disipador para disipar los caudales evacuados sobre el vertedero y posteriormente
restituirlos al cauce natural a través de un canal de sección trapezoidal con pendiente del
0.5%.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Símbolo</th>
<th>Valor</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal de diseño</td>
<td>Q</td>
<td>918.17</td>
<td>m³/s</td>
</tr>
<tr>
<td>Carga de agua máxima sobre el vertedero</td>
<td>h</td>
<td>2.66</td>
<td>m³/s</td>
</tr>
<tr>
<td>Ancho disponible</td>
<td>W</td>
<td>50</td>
<td>m</td>
</tr>
<tr>
<td>Altura de paramento</td>
<td>p</td>
<td>4.50</td>
<td>m</td>
</tr>
<tr>
<td>Número de ciclos</td>
<td>n</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Ancho de cada ciclo</td>
<td>w</td>
<td>12.50</td>
<td>m</td>
</tr>
<tr>
<td>longitud de desarrollo de un ciclo</td>
<td>l</td>
<td>37.50</td>
<td>m</td>
</tr>
<tr>
<td>h/p</td>
<td>-</td>
<td>0.59</td>
<td>-</td>
</tr>
<tr>
<td>a/a max</td>
<td>-</td>
<td>0.76</td>
<td>-</td>
</tr>
<tr>
<td>w/p</td>
<td>-</td>
<td>2.78</td>
<td>-</td>
</tr>
<tr>
<td>l/w</td>
<td>-</td>
<td>3.00</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: (Promas-Universidad de Cuenca, 2017a)

Por otro lado, el aliviadero con vertedero en laberinto de la presa Macul 2 se diseñó
bajo las mismas consideraciones que en el anterior caso. El aliviadero está constituido por un
canal de aproximación de 50 m de ancho, que conduce el caudal hacia un vertedero con
geometría en planta trapezoidal. El vertedero tiene una altura de paramento de 4.50 m y una
longitud de 120 m que permitirá evacuar un caudal máximo de 1017.16 m³/s (Tabla 3-6).
Aguas abajo del vertedero se dispuso un canal de descarga de 50 m de ancho, con pendiente
variable (4.20 y 20.50 %) en función de la configuración topográfica de la zona. El canal de
descarga finalmente se conecta con un cuenco disipador y este último a un canal de
restitución, permitiendo evacuar los caudales de excedencia sin alterar las condiciones del
cauce natural. El esquema general del aliviadero se presenta en la Figura 3.6.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Símbolo</th>
<th>Valor</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal de diseño</td>
<td>Q</td>
<td>1017.16</td>
<td>m³/s</td>
</tr>
<tr>
<td>Carga de agua máxima sobre el vertedero</td>
<td>h</td>
<td>2.52</td>
<td>m³/s</td>
</tr>
<tr>
<td>Ancho disponible</td>
<td>W</td>
<td>50</td>
<td>m</td>
</tr>
<tr>
<td>Característica</td>
<td>Notación</td>
<td>Valor</td>
<td>Unidad</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Altura de paramento</td>
<td>p</td>
<td>4.50</td>
<td>m</td>
</tr>
<tr>
<td>Número de ciclos</td>
<td>n</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ancho de cada ciclo</td>
<td>w</td>
<td>12.50</td>
<td>m</td>
</tr>
<tr>
<td>Longitud de desarrollo de un ciclo</td>
<td>l</td>
<td>37.50</td>
<td>m</td>
</tr>
<tr>
<td>h/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α/α_{max}</td>
<td></td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>w/p</td>
<td></td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>l/w</td>
<td></td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>l/w</td>
<td></td>
<td>3.00</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: (Promas-Universidad de Cuenca, 2017a)
Figura 3.4 Esquema general del aliviadero con vertedero en abanico – Presa Lechugal 2
Fuente: (Promas-Universidad de Cuenca, 2017a)
Figura 3.5 Esquema general del aliviadero con vertedero en laberinto – Presa Macul 1. Las cotas están en m s.n.m.

Fuente: (Promas-Universidad de Cuenca, 2017a)
Figura 3.6 Esquema general del aliviadero con vertedero en laberinto – Presa Macul 2. Las cotas están en m s.n.m.

Fuente: (Promas-Universidad de Cuenca, 2017a)
3.3 Instalaciones experimentales

En primer lugar, cabe señalar que la presente investigación se ha realizado como parte de la Maestría en Ciencias de la Ingeniería para la Gestión de los Recursos Hídricos (MRH) con el apoyo del Departamento de Ingeniería Civil de la Universidad de Cuenca (DIC) a través del Laboratorio de Hidráulica y Dinámica de Fluidos (LH&DF), en el marco de cooperación I+D+i Promas-Universidad de Cuenca.

El laboratorio utilizado se encuentra localizado en el Campus Quinta Balzay y dispone de un área de 2000m² (Figura 3.7). El agua utilizada dentro de las instalaciones del laboratorio es captada desde el río Tomebamba a través de un sistema de flujo a gravedad (canal no revestido). El sistema permite transportar un caudal aproximado de hasta 160 l/s y almacenar el agua en un reservorio impermeabilizado con capacidad de 39 m³. El reservorio dispone de un vertedero rectangular de pared gruesa y una compuerta plana de fondo (de operación vertical) que permiten regular los niveles de agua almacenada y distribuir la hacia los modelos físicos. Adicionalmente, el reservorio dispone de dos vertederos triangulares de pared delgada, en paralelo, para medir y controlar el caudal requerido para cada una de las pruebas experimentales a ejecutarse en los modelos físicos. Finalmente, el caudal distribuido desde el reservorio hacia los modelos físicos a través de un canal rectangular con recubrimiento de hormigón, luego de su uso, es restituido nuevamente hacia el río Tomebamba.

![Figura 3.7 Vista aérea del laboratorio de modelación física del PROMAS-Universidad de Cuenca](image)
Figura 3.8 Reservorio para almacenamiento de agua dentro del laboratorio.

Izquierda: Ubicación del vertedero de pared gruesa y compuerta de fondo en el reservorio.
Derecha: Vertederos triangulares en paralelo para distribución de caudales hacia los modelos físicos.

3.4 Diseño experimental

En términos generales, los modelos físicos están constituidos por tres zonas. La zona 1 comprende de un canal de distribución de caudales hacia el modelo físico, un vertedero rectangular de pared delgada y una zona de aquietamiento del flujo. La zona 2 comprende la representación física a escala no distorsionada del aliviadero y sus obras complementarias. La zona 3 comprende el canal de restitución del caudal hacia el río Tomebamba.

3.4.1 Diseño experimental del aliviadero con vertedero en abanico

El modelo físico del aliviadero con vertedero en abanico se diseñó sobre la base de las consideraciones teóricas de modelación física expuestas en la sección 2.4.1. El modelo físico del aliviadero fue construido a escala reducida 1:35 (no distorsionada), de acuerdo al diseño original y fundamentado en el criterio de similitud de Froude (Promas-Universidad de Cuenca, 2017a). Este enfoque ha sido universalmente aceptado y utilizado en estudios en modelo físico de estructuras hidráulicas. En la Tabla 3-2 se presentan las principales relaciones de escala para diferentes parámetros de interés.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Símbolo</th>
<th>Relación Modelo : Prototipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>L_r</td>
<td>1:35</td>
</tr>
<tr>
<td>Área</td>
<td>A_r</td>
<td>L_r^2 ≡ 1:1225</td>
</tr>
<tr>
<td>Volumen</td>
<td>V_r</td>
<td>L_r^3 ≡ 1:42875</td>
</tr>
<tr>
<td>Velocidad</td>
<td>v_r</td>
<td>L_r^{1/2} ≡ 1:35^{1/2}</td>
</tr>
<tr>
<td>Tiempo</td>
<td>t_r</td>
<td>L_r^{1/2} ≡ 1:35^{1/2}</td>
</tr>
</tbody>
</table>
El modelo físico se construyó integralmente a través de albañilería convencional, tanto el vertedero como sus obras complementarias. El material utilizado fue mortero de cemento, con un recubrimiento posterior de laca sobre la superficie totalmente lisa. El modelo físico está constituido por un canal de aproximación de 1.90 m de ancho, 4 m de longitud y 0.30 m de altura, acondicionado con pantallas de quietamiento ubicadas a una distancia de 2 m aguas arriba del vertedero para garantizar la uniformidad del flujo de aproximación hacia el vertedero en abanico. La geometría del vertedero en abanico se construyó discretizando el arco a través de moldes de madera garantizando una precisión de 0.05 mm. Las obras complementarias del aliviadero (canal de descarga, cuenco disipador, etc.) fueron construidas con mortero de cemento liso, cuyas características de rugosidad se adecuaron conforme los requerimientos de efectos de escala. El modelo físico del aliviadero y sus dimensiones se presentan en la Figura 3.9 y Figura 3.10, respectivamente.

Figura 3.9 Modelo físico del aliviadero con vertedero en abanico – Lechugal 2
3.4.2 Diseño experimental de los aliviaderos con vertedero en laberinto

Al igual que en el anterior caso, los modelos físicos de aliviaderos con vertedero en laberinto fueron diseñados sobre la base de las consideraciones teóricas de modelación física expuestas en la sección 2.4.1. Los modelos físicos de los aliviaderos fueron construidos a escala reducida 1:45 (no distorsionada), de acuerdo al diseño original y fundamentado en el criterio de similitud de Froude (Promas-Universidad de Cuenca, 2017a). En la Tabla 3-8 se presentan las principales relaciones de escala para diferentes parámetros de interés.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Símbolo</th>
<th>Relación Modelo : Prototipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>L_r</td>
<td>1:45</td>
</tr>
<tr>
<td>Área</td>
<td>A_r</td>
<td>L_r^2 = 1:2025</td>
</tr>
<tr>
<td>Volumen</td>
<td>V_r</td>
<td>L_r^3 = 1:91125</td>
</tr>
<tr>
<td>Velocidad</td>
<td>v_r</td>
<td>L_r^{1/2} = 1:45^{1/2}</td>
</tr>
<tr>
<td>Tiempo</td>
<td>t_r</td>
<td>L_r^{1/2} = 1:45^{1/2}</td>
</tr>
</tbody>
</table>

Tanto el vertedero del modelo físico del aliviadero Macul 1 como del aliviadero Macul 2, fueron construidos en madera con un recubrimiento de laca acrílica en la superficie lisa para ajustar las condiciones de rugosidad requeridas. En ambos casos, la geometría del vertedero en laberinto se construyó garantizando una precisión de 0.05 mm. Las estructuras complementarias de los aliviaderos fueron construidas mediante albañilería convencional,
utilizando mortero de cemento, acondicionando la superficie a las condiciones de rugosidad requeridas para alcanzar adecuadas condiciones de similitud.

Por un lado, el modelo físico del aliviadero Macul 1 está constituido por un canal de aproximación de 2 m de ancho, 4 m de longitud y 0.30 m de profundidad. Dentro del canal de aproximación se instalaron pantallas de aquietamiento a una distancia de 2 m aguas arriba del vertedero, como en el anterior caso, para garantizar la uniformidad del flujo de aproximación hacia el vertedero en laberinto. El modelo físico del aliviadero y sus dimensiones se presentan en la Figura 3.11 y Figura 3.12, respectivamente.

Por otro lado, el modelo físico del aliviadero Macul 2 está constituido por un canal de aproximación de 2 m de ancho, 6 m de longitud y 0.30 m de profundidad. Dentro del canal de aproximación se instalaron pantallas de aquietamiento a una distancia de 3 m aguas arriba del vertedero para garantizar la uniformidad del flujo de aproximación hacia el vertedero en laberinto. El modelo físico del aliviadero y sus dimensiones se presentan en la Figura 3.13 y Figura 3.14, respectivamente.

Figura 3.11 Modelo físico del aliviadero con vertedero en laberinto – Macul
Figura 3.12 Vista en planta y sección longitudinal del aliviadero en laberinto – Macul 1 (Las dimensiones están en centímetros)

Figura 3.13 Modelo físico del aliviadero con vertedero en laberinto – Macul 2
3.5 Instrumentación

A continuación, se describen los instrumentos de medida utilizados durante las campañas experimentales:

3.5.1 Medidor de caudales

- **Vertederos**

El flujo que pasa a través en un canal puede ser medido a través de un vertedero. Los tipos de vertederos más usados como instrumentos en laboratorio son de pared delgada con geometría rectangular y triangular (Figura 3.15).

![Vertederos para medición de caudales](image)
Los vertederos previamente fueron calibrados obteniendo la curva de descarga (Q vs H) de cada uno de ellos, según su geometría a través de aforos de caudal. La carga H fue medida a una distancia 4H aguas arriba de los vertederos. El rango de caudal para el cual fueron diseñados los vertederos triangulares en paralelo es de 1 a 80 l/s en conjunto, con una precisión de medición de 0.01 l/s (Figura 3.16). El vertedero rectangular fue diseñado con una capacidad máxima de 88 l/s, y como en el anterior caso se garantiza una precisión de medición de 0.01 l/s (Figura 3.17). En ambos casos, los vertederos no fueron aforados hasta su máxima capacidad dado la complejidad de aforo, debiendo ajustar la curva de descarga hasta alcanzar los caudales máximos de diseño.

Figura 3.16 Curva de descarga de vertederos triangulares
3.5.2 Medidor de velocidades

- **Micro molinetes**: Este medidor, que se utiliza para medir y registrar velocidades puntuales bajas en agua y otros fluidos conductivos, utiliza el número de revoluciones de una hélice calibrada registradas por un contador electrónico, para indicar la velocidad de rotación causada por el flujo del fluido. El pequeño diámetro la hélice permite utilizar el medidor en conductos y canales de reducidas dimensiones, determina la velocidad del fluido, mediante la utilización de fórmulas características de éste, en función del número de revoluciones en un tiempo determinado.

![Figura 3.17 Curva de descarga del vertedero rectangular](image_url)
Especificaciones:
- **Marca:**
- **Modelo:**
- **Tamaño:** 7 "x 4" x 1 " (18 cm x 10 cm x 3 cm)
- **Peso:** 1 libra (0,4 kg)
- **Batería:** Una alcalina de 9V
- **El rango de velocidad:** Tipo AA 0 a 25 pies/s (de 0 a 7,6 m/s)
- **Pygmy** 0 a 5 m/s (0 a 1,5 m/s)
- **Rango de temperatura:** -20 ° C a + 70 ° C

- **Tubo de Pitot-Prandtl:** Puede utilizarse tanto en conductos libres como a presión. En su extremo inferior cuenta con un orificio en dirección de la corriente de flujo para medir la presión total. Por otro lado, se tiene un tubo piezométrico, con varias entradas laterales interconectadas que no perturban la corriente y miden la presión estática. La carga de velocidad (h_v) es determinada por la ecuación (3-1).

$$h_v = p_{total} - p_{estática} = \frac{V^2}{2g} \quad \text{(3-1)}$$

Siendo: h_v la carga de velocidad; V la velocidad del fluido; y g la aceleración de la gravedad (9.81 m/s²).
Sistema FlowTracker: El equipo Flow Tracker utiliza el principio de la tecnología ADV (Acoustic Doppler Velocity). Permite realizar mediciones en cursos de agua de poca profundidad. Consta de un transmisor que emite señales de sonido de velocidad y frecuencia conocida, y dos receptores acústicos a los que llega la señal luego de ser reflejada por los objetos en movimiento. El emisor se coloca en el extremo de una barra extensible graduada para su accionamiento y posicionamiento manual; consta de una base circular para apoyar el equipo en el fondo del cuerpo de agua a medir, y un soporte en la parte superior para el equipo de registro. El rango de velocidades que puede medir es de 0,0001 m/s a 4,5 m/s con precisión de ±1% de la velocidad medida. La simpleza de diseño del emisor de señal le confiere gran ductilidad: puede registrar velocidades en cursos con profundidad mínima de 2 cm. La barra extensible graduada y la extensión del cable (de 2 m de longitud) permiten realizar mediciones desde estructuras fijas (Palman, Montagnino, and Trento, 2015).

![Imagen del sistema Flow Tracker]

3.5.3 Medidor de calados

Limnímetros: Medidor de punta (recta) con un sistema de carril mecanizado como soporte fijado a un conjunto de engranaje de tornillo sin fin (Figura 3.21). Este medidor se usó para determinar la elevación de la cresta y la altura del vertedero de los modelos de laberinto y abanico; y además para medir calados en puntos específicos dentro del modelo físico. El rango de altura varía entre 0 y 600 mm con una precisión de 0.01 mm.
3.5.4 Distribución del flujo

- **Trazadores**: Se visualiza mediante la aplicación de trazadores de permanganato de potasio para tener una buena representación de los patrones y dirección del flujo, facilitando su observación.

- **Cámara fotográfica**: La cámara utilizada para el registro de videos e fotografías durante la etapa experimental es de la marca Sony, de 16.2 megapíxeles.
3.5.5 Otros

Las mediciones geométricas dentro de las instalaciones de prueba se realizaron con reglas, cintas de medida y calibrador Vernier con precisión de ±0.75 mm y ±0.1 mm, respectivamente. Instrumentos adicionales para registrar calados en diferentes puntos de interés del modelo y medidas longitudinales como anchos y alturas.

3.6 Procedimientos de prueba

Previo al planteamiento de los procedimientos de prueba a través de los modelos físicos se estableció pertinente la identificación de las variables de interés. Luego, garantizar que exista una adecuada representatividad de los resultados en modelo físico de manera que estos puedan ser proyectados a prototipo, esto a través del proceso de calibración de los modelos físicos. Finalmente, se plantearán los escenarios experimentales en función de los objetivos planteados en la presente investigación.

3.6.1 Variables de estudio

Para el fenómeno a estudiar, se identificaron las variables presentes consideradas relevantes en términos de la conceptualización teórica y las simplificaciones establecidas. Se establecieron las relaciones existentes precisando las variables dependientes y aquellas que son independientes y que determinan las condiciones de frontera, los límites y los parámetros de entrada. En este sentido, además de las consideraciones de frontera impuestas por condiciones físicas y de diseño, se realizó la modelización física de acuerdo a las siguientes directrices:

- **Variables independientes:**

 Caudal: Definido en función de cada estructura hidráulica evaluada a través de modelo físico, y de acuerdo a la disponibilidad de información hidrológica. Se planteó adicionalmente incluir dentro del análisis, la simulación del hidrograma de la avenida de diseño, permitiendo establecer un tiempo de funcionamiento del modelo físico sobre la base de aspectos relacionados al régimen hidrológico esperado.

- **Variables dependientes**

 El diseño experimental permitió identificar claramente las variables de orden cuantitativo y cualitativo. Las de orden cualitativo, se identificaron mediante procedimientos
observacionales, permitiendo resaltar efectos producidos por las diferentes condiciones y procesos de flujo. Las variables consideradas se identificaron de manera previa como se indica a continuación:

- Distribución longitudinal y transversal de velocidades y calados.
- Flujo preferencial asociado a efectos de la estructura.
- Cambios en la configuración morfológica de áreas de interés (dentro de estanques de disipación).
- Cambios posibles que se consideren relevantes en la geometría de la sección.

3.6.2 Calibración y análisis de escala de los modelos físicos

Estos procesos se llevaron a cabo para garantizar que los criterios de similitud modelo–prototipo expuestos en 2.4.1 se cumplan. Se analizó tanto la rugosidad del material utilizado en los modelos para compensar los efectos de viscosidad, así como también la escala de los modelos para garantizar las condiciones de turbulencia representadas en prototipo. Para el primer punto se llevó a cabo el proceso de calibración, para el segundo punto se llevó a cabo un análisis de escala.

Por un lado, la calibración se realizó a través de los resultados reportados en Promas-Universidad de Cuenca (2017b, 2017c, 2017d), considerando dos secciones críticas tales como la cresta del vertedero y una sección en el canal de descarga del aliviadero con vertedero en abanico y en laberinto.

Por otro lado, la escala adoptada para los modelos físicos se analizó considerando los aforos en modelo físico presentados en Promas-Universidad de Cuenca (2017b, 2017c, 2017d) para los caudales máximos y mínimos de simulación. En ambos casos, los resultados se presentan en el CAPÍTULO 4.

3.6.3 Escenarios experimentales

Para evaluar el diseño original de las estructuras hidráulicas planteadas se establecieron, en función de los objetivos específicos, escenarios de experimentación en modelo físico. En este punto se diseñó el procedimiento de registro de datos (variables dependientes), y se dimensiona el alcance de los mismos (número de mediciones y/o repeticiones).

> Aliviadero con vertedero en abanico
La campaña de ensayos experimentales se centró en la evaluación del desempeño hidráulico y la caracterización de la distribución del flujo para las condiciones de máximo funcionamiento del diseño original del aliviadero propuesto (Tabla 3-9). Esto es, cuantificando el caudal que pasa sobre el vertedero en abanico a través del registro de los calados de agua sobre la cresta del vertedero y las velocidades de aproximación para determinar la influencia del flujo sobre la capacidad de descarga. Simultáneamente, se caracterizó el efecto de los muros laterales convergentes sobre las variables tales como calados y velocidades a lo largo de toda la sección longitudinal del canal de descarga del aliviadero, hasta la salida del cuenco disipador y canal de restitución.

<table>
<thead>
<tr>
<th>Tipo de ensayo</th>
<th>Variable independiente</th>
<th>Variables dependientes medidas</th>
<th>Característica observada</th>
<th>Numero de ensayos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de descarga del vertedero</td>
<td>Caudal</td>
<td>Calado, velocidad</td>
<td>Distribución del flujo</td>
<td>5</td>
</tr>
<tr>
<td>Influencia de muros laterales</td>
<td>Caudal</td>
<td>Velocidad</td>
<td>Distribución del flujo</td>
<td>5</td>
</tr>
<tr>
<td>Distribución de velocidades en el canal de descarga, al final de cada cambio de pendiente</td>
<td>Caudal</td>
<td>Calado, velocidad</td>
<td>Distribución del flujo</td>
<td>5</td>
</tr>
<tr>
<td>Disipación de energía en el cuenco</td>
<td>Caudal</td>
<td>Calado, velocidad</td>
<td>Distribución del flujo</td>
<td>5</td>
</tr>
<tr>
<td>Distribución de velocidades en el canal de restitución</td>
<td>Caudal</td>
<td>Calado, velocidad</td>
<td>Distribución del flujo, erosión desarrollada</td>
<td>5</td>
</tr>
</tbody>
</table>

Los parámetros descritos fueron la base para el análisis de los diferentes escenarios experimentales propuestos durante toda la fase experimental. Se estableció un rango de caudales entre 44.50 y 326.44 m³/s para el análisis de la propuesta de diseño original y las diferentes alternativas durante toda la fase de estudio.

➢ **Aliviaderos con vertedero en laberinto**

De igual forma, y para el caso de los dos aliviaderos con vertedero en laberinto, la campaña de ensayos experimentales inicialmente se centró en la evaluación del desempeño hidráulico y la caracterización de la distribución del flujo para las condiciones de máximo funcionamiento del diseño original de los aliviaderos propuestos (Tabla 3-10). Así mismo, se caracterizó el efecto sobre las variables de calados y velocidades aguas abajo del vertedero.
cuando se produce la descarga. Además, a lo largo de toda la sección longitudinal del canal de descarga del aliviadero, hasta la salida del cuenco disipador y canal de restitución, se analizó el comportamiento del flujo para las diferentes características de aliviadero propuestos.

Los parámetros descritos serán la base para el análisis de los diferentes escenarios experimentales propuestos durante toda la fase experimental. Se estableció un rango de caudales entre 44.50 y 987 m3/s para el caso del aliviadero Macul 1 y entre 271 y 1019 m3/s para caso del aliviadero Macul 2, con el propósito de analizar la propuesta de diseño original y las diferentes alternativas establecidas durante toda la fase de estudio.

<table>
<thead>
<tr>
<th>Tipo de ensayo</th>
<th>Variable independiente</th>
<th>Variables dependientes medidas</th>
<th>Característica observada</th>
<th>Numero de ensayos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de descarga del vertedero</td>
<td>Caudal</td>
<td>Calado, velocidad</td>
<td>Distribución del flujo</td>
<td>5</td>
</tr>
<tr>
<td>Influencia de muros laterales</td>
<td>Caudal</td>
<td>Velocidad</td>
<td>Distribución del flujo</td>
<td>5</td>
</tr>
<tr>
<td>Distribución de velocidades en el canal de descarga</td>
<td>Caudal</td>
<td>Calado, velocidad</td>
<td>Distribución del flujo</td>
<td>5</td>
</tr>
<tr>
<td>Disipación de energía en el cuenco</td>
<td>Caudal</td>
<td>Calado, velocidad</td>
<td>Distribución del flujo</td>
<td>5</td>
</tr>
<tr>
<td>Distribución de velocidades en el canal de restitución</td>
<td>Caudal</td>
<td>Calado, velocidad</td>
<td>Distribución del flujo, erosión desarrollada</td>
<td>5</td>
</tr>
</tbody>
</table>
CAPÍTULO 4

Resultados y Discusión

4.1 Calibración y análisis de escala de los modelos físicos

Como se ha mencionado, los modelos físicos de las estructuras hidráulicas sujetas a estudio requieren cumplir con los criterios de similitud de Froude y Reynolds. Por lo tanto, se llevó a cabo el proceso de calibración y análisis de escala según lo expuesto en 3.6.2 y cuyos resultados se exponen a continuación:

4.1.1 Aliviadero con vertedero en abanico

Con el objeto de garantizar que los criterios de similitud se cumplan para el caso del vertedero en abanico se tomaron los registros de aforos en la sección 5 (Figura 4.1) y trasladaron a prototipo en base a los criterios de similitud. En la Tabla 3-9 se presentan los resultados para el análisis del número de Reynolds (Re), donde; según el criterio expuesto por Pfister and Chanson (2012) la escala adoptada es adecuada para el caudal de 326.78 m³/s dado que el valor de Reynolds obtenido, Re = 2.08 x 10⁶ es mayor al sugerido por los autores 2 x 10⁵.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Símbolo</th>
<th>Modelo</th>
<th>Prototipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosidad cinemática del fluido</td>
<td>ν</td>
<td>m²/s</td>
<td>1.06E-06</td>
</tr>
<tr>
<td>Caudal</td>
<td>Q</td>
<td>l/s</td>
<td>45.09</td>
</tr>
<tr>
<td>Tirante</td>
<td>d</td>
<td>m</td>
<td>0.05</td>
</tr>
<tr>
<td>Ancho del canal</td>
<td>B</td>
<td>m</td>
<td>0.485</td>
</tr>
<tr>
<td>Área mojada</td>
<td>Aₚ</td>
<td>m²</td>
<td>0.024</td>
</tr>
<tr>
<td>Perímetro mojado</td>
<td>Pₚ</td>
<td>m</td>
<td>0.58</td>
</tr>
<tr>
<td>Velocidad</td>
<td>V</td>
<td>m/s</td>
<td>1.90</td>
</tr>
<tr>
<td>Radio hidráulico</td>
<td>Rₕ</td>
<td>m</td>
<td>0.041</td>
</tr>
<tr>
<td>Número de Reynolds de Flujo</td>
<td>Re</td>
<td></td>
<td>2.92E+05</td>
</tr>
</tbody>
</table>

Por otro lado, para verificar el número de Weber, se tomaron varios aforos considerando la cresta del vertedero en abanico como sección de control (sección 2 de la Figura 4.1). En la Tabla 3-10 se presentan los valores de caudal, velocidad y calado medidos.
en modelo físico, observándose que según el criterio establecido por (Ettema et al., 2000) desde el caudal de 230.46 m³/s se pueden despreciar los efectos de tensión superficial posibles sobre la cresta del vertedero dado que el número de Weber es de 100.51 > 100.

<table>
<thead>
<tr>
<th>Q (l/s)</th>
<th>V (m/s)</th>
<th>L (m)</th>
<th>Weber</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.15</td>
<td>44.57</td>
<td>0.24</td>
<td>1.43</td>
</tr>
<tr>
<td>10.01</td>
<td>72.54</td>
<td>0.29</td>
<td>1.72</td>
</tr>
<tr>
<td>18.30</td>
<td>132.62</td>
<td>0.35</td>
<td>2.08</td>
</tr>
<tr>
<td>22.85</td>
<td>165.60</td>
<td>0.38</td>
<td>2.24</td>
</tr>
<tr>
<td>26.03</td>
<td>188.64</td>
<td>0.40</td>
<td>2.36</td>
</tr>
<tr>
<td>31.80</td>
<td>230.46</td>
<td>0.43</td>
<td>2.53</td>
</tr>
<tr>
<td>33.75</td>
<td>244.59</td>
<td>0.45</td>
<td>2.63</td>
</tr>
<tr>
<td>45.05</td>
<td>326.49</td>
<td>0.48</td>
<td>2.85</td>
</tr>
</tbody>
</table>

4.1.2 Aliviadero con vertedero en laberinto

Con el propósito que los resultados alcanzados en los estudios en el modelo físico Macul 1 tuvieran un alto grado de confiabilidad, se realizó el análisis de efectos de escala para los diferentes parámetros de interés dentro de la investigación. En este sentido, se evaluó el número de Reynolds como uno de los parámetros adimensionales de relevancia en el campo de la modelación física, el cual nos permite identificar posibles distorsiones introducidas por efectos de viscosidad. En la Tabla 4-3 se presentan los parámetros considerados para el análisis de efectos de escala en el modelo físico con los que se alcanza un número de Reynolds, \(Re = 2.18 \times 10^6 \), mayor al sugerido por los autores \(2 \times 10^5 \); con lo cual se pueden despreciar efectos de escala generados por la viscosidad del fluido.

De igual forma, en el caso del modelo físico Macul 2, se realizó el análisis de efectos de escala para los diferentes parámetros de interés. Así, en la Tabla 4-3 se presentan los parámetros considerados para el análisis de efectos de escala obteniéndose un número de Reynolds, \(Re = 2.07 \times 10^6 \), mayor al sugerido por los autores \(2 \times 10^5 \); con lo cual se pueden despreciar efectos de escala generados por la viscosidad del fluido.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Modelo</th>
<th>Prototipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosidad cinemática del fluido</td>
<td>m³/s</td>
<td>1.06E-06</td>
<td>1.06E-06</td>
</tr>
<tr>
<td>Parámetro</td>
<td>Unidad</td>
<td>Modelo</td>
<td>Prototipo</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>Viscosidad cinemática del fluido</td>
<td>1.06E-06</td>
<td>1.06E-06</td>
<td></td>
</tr>
<tr>
<td>Caudal</td>
<td>m³/s</td>
<td>0.039</td>
<td>530.76</td>
</tr>
<tr>
<td>Tirante</td>
<td>m</td>
<td>0.045</td>
<td>2.01</td>
</tr>
<tr>
<td>Ancho del canal</td>
<td>m</td>
<td>1.110</td>
<td>50.00</td>
</tr>
<tr>
<td>Perímetro mojado</td>
<td>m</td>
<td>1.199</td>
<td>54.020</td>
</tr>
<tr>
<td>Área</td>
<td>m²</td>
<td>0.050</td>
<td>100.50</td>
</tr>
<tr>
<td>Radio hidráulico</td>
<td>m</td>
<td>0.041</td>
<td>1.860</td>
</tr>
<tr>
<td>Velocidad</td>
<td>m/s</td>
<td>1.328</td>
<td>8.91</td>
</tr>
<tr>
<td>Numero de Reynolds de Flujo</td>
<td>-</td>
<td>2.07E+05</td>
<td>6.26E+07</td>
</tr>
</tbody>
</table>

Debido a las características de los modelos hidráulicos de los aliviaderos Macul 1 y 2, la investigación se enfocó en evaluar caudales extremos para los cuales se garantiza que el flujo está en el rango turbulento completamente rugoso y no se consideran los efectos de escala por viscosidad. Además, dado que el espesor de los vertederos en laberinto es muy pequeño los efectos de tensión superficial podrían ser despreciados.

4.2 Evaluación experimental del aliviadero con vertedero en abanico

Una vez analizada la influencia de la escala en modelo físico se exponen los resultados de las pruebas experimentales realizadas para el caso del aliviadero con vertedero en abanico.

4.2.1 Evaluación del diseño original

La Figura 4.1 presenta las nueve (9) secciones de interés establecidas en el modelo físico para un adecuado tratamiento de los resultados. Así, realizada la evaluación del desempeño hidráulico del vertedero en abanico, en la Figura 4.2 se representan las relaciones H/Hd vs q obtenidas tanto a nivel experimental como predictivo (teórico) usando el método de la USBR. La eficiencia en la descarga del vertedero obtenida experimentalmente es similar.
a la estimada según los criterios teóricos para un rango de 0.3<H/Hd<0.80. Además, se corrobora que la metodología de modelación física empleada dentro del estudio es adecuada.

El coeficiente de descarga C obtenido experimentalmente a través del modelo físico varía con respecto a los criterios teóricos expuestos anteriormente. Experimentalmente, C varía entre 2.06 y 2.15, y teóricamente varía entre 2.15 y 2.21 (USBR, 1987) y entre 1.41 y 1.50 (Alegret Breña and Martínez González, 2008). Del mismo modo, C varía del recomendado por Sotelo Ávila (1994), entre 1.96 – 2.03.

![Diagrama de la distribución de secciones dentro del aliviadero](image)

Figura 4.1 Distribución de secciones dentro del aliviadero – Lechugal 1
Figura 4.2 Datos experimentales y predictivos (USBR) del flujo sobre el vertedero (unidades en prototipo)

q: Caudal por ancho unitario.

Adicionalmente, la Figura 4.3 muestra la relación entre la carga sobre la cresta del vertedero y el coeficiente de descarga C, donde se compara los resultados experimentales del modelo físico a escala 1:35, y los criterios teóricos de USBR y Alegret Breña. Existe una tendencia semejante entre los resultados experimentales y el criterio de la USBR (1987), disfiriendo del criterio de Alegret Breña. Igualmente, se observa que cuando $H/Hd = 1$ la relación $C/Cd = 1$, esto implica que las condiciones aguas abajo del vertedero no afectan su funcionamiento.

![Figura 4.3 Comparación de los coeficientes de descarga para cargas diferentes a la carga de diseño (unidades en prototipo)](image)

Se identificó, para las condiciones más críticas de descarga, diferentes características del flujo aguas abajo del vertedero de excesos, tales como: velocidad en el perímetro del pie del vertedero, distancia del vertedero al punto inicial del resalto, altura máxima de la cresta del resalto, etc. En este sentido, la Figura 4.4 presenta los puntos de medición de velocidades y calados para los escenarios de caudal presentados en la Tabla 4-5. El calado difiere del establecido en el diseño principalmente en los puntos 2, 5 y 6, por ejemplo; en el punto 2 el calado teórico es de 2.96 m mientras que el medido en modelo físico fue de 4.03 m para el caudal máximo de 326.44 m3/s (en prototipo).
Figura 4.4 Puntos de medición de los parámetros hidráulicos en el modelo físico

<table>
<thead>
<tr>
<th>Caudal (m³/s)</th>
<th>Parámetro</th>
<th>Unidad</th>
<th>Puntos de medición</th>
</tr>
</thead>
<tbody>
<tr>
<td>240.41</td>
<td>Velocidad</td>
<td>(m/s)</td>
<td>7.41 - 7.91 7.41 -</td>
</tr>
<tr>
<td></td>
<td>Calado</td>
<td>(m)</td>
<td>- 2.98 0.48 0.45 2.98 2.87</td>
</tr>
<tr>
<td>326.44</td>
<td>Velocidad</td>
<td>(m/s)</td>
<td>8.12 - 9.5 8.15 -</td>
</tr>
<tr>
<td></td>
<td>Calado</td>
<td>(m)</td>
<td>- 4.03 0.62 0.59 3.15 3.33</td>
</tr>
</tbody>
</table>

Un aspecto de interés para el análisis del comportamiento del flujo en régimen supercrítico es la distribución del flujo influenciado por una contracción con muros convergentes simétricos donde se presentan ondas cruzadas simétricas al eje del canal, las cuales se desarrollan aguas abajo de la contracción. Con esa perspectiva, durante los procesos de experimentación en modelo físico, aguas abajo de la transición se identificaron líneas de flujo oblicuas (ondas cruzadas) formadas entre los muros de las rápidas. Sin embargo, y como se explicó anteriormente, este efecto común para las estructuras con estas características geométricas y régimen de flujo supercrítico.

Como se observa en la Figura 4.5, el punto de intersección de las líneas de flujo se presenta al final de la segunda rápida (sección 5). El desarrollo de las ondas cruzadas se presenta con una ligera tendencia hacia la margen derecha. El análisis de las características del flujo, con presencia de líneas de flujo oblicuas u ondas cruzadas, está ligado al incremento de calado tanto en la intersección de las mismas, así como en los muros laterales.
Con el propósito de verificar velocidades puntuales en diferentes tramos y/o rápidas del aliviadero, se registraron los calados y las velocidades en el tramo final de cada rápida (Figura 4.6). En la Tabla 4-6 se puede observar que la velocidad se incrementa de 8.33 m/s en la rápida 1 (sección 3) hasta 20.20 m/s en la rápida 3 (sección 6).

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Velocidad (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>Prototipo</td>
</tr>
<tr>
<td>Rápida 1</td>
<td>1.41</td>
</tr>
<tr>
<td>Rápida 2</td>
<td>1.90</td>
</tr>
<tr>
<td>Rápida 3</td>
<td>3.41</td>
</tr>
</tbody>
</table>

En la Figura 4.7 se muestra el comportamiento del flujo aguas abajo del aliviadero. Nótese que la formación del calado conjugado y el resalto hidráulico para el caudal de 326.44 m³/s está en la sección de control (línea punteada). El máximo calado por efecto del resalto hidráulico es de 4.03 m y no existe sumergencia del aliviadero. Adicionalmente, se puede distinguir los efectos del cruce de las líneas de flujo (líneas azules) en la misma sección de control, para las condiciones de máxima descarga.
Por otro lado, se evaluó el desempeño hidráulico del cuenco amortiguador del vertedero de excesos influenciado por las velocidades de aproximación hacia ésta estructura. En base a los valores presentados en la Tabla 4-6, donde la velocidad media registrada al final de la rápida 3, es de 20.20 m/s.

En la Tabla 4-7 se presenta el cálculo del número de Froude en base a los parámetros medidos en la aproximación al cuenco amortiguador y en base a la geometría al final de la rápida 3. Como resultado se obtuvo un numero de Froude de aproximadamente 7.54 correspondiente a una velocidad de 20.20 m/s y un calado contraído de 0.73 m. Los parámetros registrados y presentados en la Tabla 4-7 corresponden a un caudal de evacuación de 325.30 m³/s.

Tabla 4-7 Registro de parámetros medidos al final de la rápida 3, ingreso al cuenco amortiguador

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Modelo</th>
<th>Prototipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calado</td>
<td>m</td>
<td>0.021</td>
<td>0.73</td>
</tr>
<tr>
<td>Ancho</td>
<td>m</td>
<td>0.629</td>
<td>22.02</td>
</tr>
<tr>
<td>Velocidad</td>
<td>m/s</td>
<td>3.414</td>
<td>20.20</td>
</tr>
<tr>
<td>Numero de Froude</td>
<td></td>
<td>7.541</td>
<td>7.54</td>
</tr>
</tbody>
</table>
Figura 4.8 Características del flujo de aproximación hacia la estructura de disipación de energía.

Izquierda: Se puede apreciar que la distribución del flujo a través de las rápidas es uniforme. Derecha: Disminución en el calado en el cambio de pendiente entre la rápida 2 y 3, el cual influye sobre el régimen del flujo supercrítico al inicio del cuenco amortiguador.

El diseño original contempla un cuenco disipador similar al Tipo I recomendado por la USBR, el cual es válido para números de Froude entre 4.5 y 9; y corresponde a condiciones de disipación del resalto clásico.

Figura 4.9 Esquema del cuenco amortiguador Tipo I.

Como resultado de la investigación, para evaluar la eficiencia en la disipación del cuenco amortiguador, se obtuvieron los siguientes parámetros medidos en el modelo físico:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Modelo</th>
<th>Prototipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calado conjugado</td>
<td>m</td>
<td>0.23</td>
<td>7.88</td>
</tr>
<tr>
<td>Calado sobre el Umbral de Salida</td>
<td>m</td>
<td>0.09</td>
<td>3.22</td>
</tr>
<tr>
<td>Velocidad de salida del cuenco</td>
<td>m/s</td>
<td>1.56</td>
<td>9.23</td>
</tr>
<tr>
<td>Velocidad al final del canal de restitución</td>
<td>m/s</td>
<td>0.86</td>
<td>5.09</td>
</tr>
</tbody>
</table>

Se determinó una eficiencia en la disipación del amortiguador del 35% para el caudal de 325.30 m³/s, relacionando la energía específica de entrada y salida del cuenco. El resalto
hidráulico se desarrolla fuera del cuenco, con una influencia fuertemente marcada hasta 28 m aguas abajo y medida desde el final de la rápida 3 (Figura 4.10).

Figura 4.10 Evaluación de la eficiencia del cuenco amortiguador.

El resalto genera alteración del flujo dentro y fuera del cuenco amortiguador, influyendo directamente sobre la distribución de velocidades dentro del canal de restitución.

El calado conjugado generado sobre el fondo del cuenco disipador fue de aproximadamente 7.88 m, el mismo que se presentaba variable debido a la turbulencia presentada dentro del cuenco.

Uno de los parámetros de relevancia para el funcionamiento adecuado del cuenco amortiguador es el calado sobre el umbral de salida del cuenco, mismo que fue medido en 3.22 m. Adicionalmente, aguas abajo del umbral de salida, en el ingreso al canal de restitución, se midieron velocidades promedio de 9.23 m/s. Las velocidades registradas al final del canal de restitución fueron de aproximadamente 4.00 m/s.

Se procedió a verificar las condiciones de bordo libre planteados en el diseño original para el caudal máximo de descarga (325.30 m³/s). Se determinó que el bordo libre al final de la rápida 3 es insuficiente para el caudal establecido ya que se genera desbordamiento de caudal debido a la gran turbulencia (Figura 4.11).

Figura 4.11 Visualización del comportamiento del flujo dentro del cuenco amortiguador.
4.2.2 Conclusiones de la evaluación al diseño original

Se utilizó un modelo físico a escala reducida 1:35 no distorsionada, para representar los procesos de flujo representativos de las obras contempladas en el diseño original del vertedero de excesos tipo abanico para la presa Lechugal 2, de tal manera que nos permita analizar el comportamiento del flujo en el vertedero de excesos, transición, rápidas, cuenco amortiguador y canal de restitución.

La capacidad máxima del aliviadero con vertedero de excesos tipo abanico es de 332.00 m3/s, con un coeficiente de descarga promedio de 2.13.

El flujo de aproximación hacia el vertedero en abanico presenta una distribución uniforme, midiendo velocidades superficiales promedio de 0.80 m/s y velocidades de descarga de 8.56 m/s (al pie del vertedero), para un caudal de 326.40 m3/s.

La formación del resalto hidráulico es generada por la confluencia de las líneas de corriente que se intersecan hacia el eje del canal, iniciando su formación a unos 10 m del pie del vertedero. La altura máxima de la cresta formada por el resalto hidráulico es de aproximadamente 4.03 m.

Para el caudal máximo de diseño, en la sección terminal de la transición existe desbordamiento de caudal por la alteración del flujo generada por efecto del resalto hidráulico, es decir; la altura de borde libre es insuficiente. Se recomienda incrementar la altura del borde libre hasta 3.80 m. medidos sobre el fondo del canal.

En el tramo final de la rápida 3, inicio del cuenco amortiguador, se genera una alteración del flujo poniendo al límite la altura de seguridad, por lo que se recomienda su revisión.

Las velocidades medidas en el tramo final de la rápida 2 (sección 4) alcanzan valores promedios de 11.26 m/s, las cuales generan número de Froude de aproximadamente 4.20. Sin embargo, las velocidades alcanzadas en el tramo final de la rápida 3 (sección 6), alcanzan un valor promedio de 20.20 m/s, para la cual se calculó un número de Froude de 7.54. Con lo cual se verifica el ingreso de caudal con velocidades altas hacia la estructura de disipación y una eficiencia en disipación del 35%.
Se registró un calado conjugado promedio de 7.88 m medido sobre el fondo del cuenco amortiguador y de 3.22 m, sobre el umbral de salida de la estructura de disipación.

Las velocidades registradas aguas abajo del cuenco amortiguador varían entre 8 y 9 m/s, lo cual contribuye a la presencia de procesos erosivos fuertes en la margen derecha del canal de restitución. De la misma manera las velocidades registradas en el tramo final del canal de restitución varían en un rango aproximado de 4 a 5 m/s.

Finalmente, por efecto de la presencia de velocidades elevadas en la estructura de descarga, y específicamente en el ingreso al cuenco amortiguador, se evaluaron alternativas que permitan disipar la energía para la condición más crítica de operación del vertedero las mismas que se presentan en la siguiente sección.

4.2.3 Alternativas planteadas al diseño original del aliviadero con vertedero en abanico

Dado que la relación entre la velocidad del flujo y el número de Froude es directamente proporcional, se han analizado alternativas que permitan disminuir la velocidad de ingreso al cuenco amortiguador; esto es; disminuyendo progresivamente la distribución de velocidades dentro del aliviadero desde el vertedero hasta el cuenco disipador.

Por un lado, en la Figura 4.12 se presenta la alternativa 1, que consiste en variar las pendientes de las rápidas 2 y 3 del diseño original, es decir; en la rápida 2 la pendiente original So=3.2% se ha variado a So= 4.30% y en la rápida 3 la pendiente So=26% se ha variado a So=25.00%, So=0.15% y So=25.54%. Los resultados alcanzados se muestran en la Tabla 4-9, donde la velocidad de ingreso al cuenco amortiguador (sección 8) fue de 19.06 m/s para el caudal de máxima descarga.

Además, de la variación de las pendientes de las rápidas del aliviadero se cambió la configuración geométrica del cuenco amortiguador. La longitud del cuenco con respecto al fondo varía de 39.20 m a 33.95 m y con respecto a su ancho varía de 22.00 m a 16.90 m. En consecuencia, con la alternativa 1 no se consigue disminuir las velocidades de ingreso al cuenco disipador.
En función de los resultados alcanzados en la alternativa 1, y considerándose que las velocidades de ingreso al cuenco amortiguador son elevadas, se ha planteado la alternativa 2. Esta alternativa consiste en colocar dados de impacto en la rápida cuya pendiente So=24.6% (ver Figura 4.13) con lo cual se obtuvo una velocidad de ingreso al cuenco disipador y de salida al canal de restitución disminuyan a 16.00 m/s y 2.80 m/s, respectivamente (Tabla 4-10). En la Figura 4.15 se muestra el funcionamiento de los dados de impacto en el modelo físico, alcanzando con esta alternativa una eficiencia de disipación del 48% como resultado de la relación entre la energía específica de entrada y salida del cuenco.

Tabla 4-9 Resultados obtenidos en la alternativa 1: sin dados de impacto (Unidades en prototipo)

<table>
<thead>
<tr>
<th>Caudal (m³/s)</th>
<th>Parámetro Medido</th>
<th>Punto de medición</th>
<th>Calado (m)</th>
<th>Velocidad (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.40</td>
<td></td>
<td>Rápida 1 So=3.20%</td>
<td>0.38</td>
<td>6.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rápida 2 So=25.00%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rápida 3 So=0.15%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rápida 4 So=25.54%</td>
<td>0.35</td>
<td>3.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salida cuenco</td>
<td>3.75</td>
<td>5.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salida canal de restitución</td>
<td>2.80</td>
<td>3.64</td>
</tr>
<tr>
<td>154.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>326.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caudal (m³/s)</th>
<th>Parámetro Medido</th>
<th>Punto de medición</th>
<th>Calado (m)</th>
<th>Velocidad (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.40</td>
<td></td>
<td></td>
<td>0.38</td>
<td>6.42</td>
</tr>
<tr>
<td>154.84</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>326.80</td>
<td></td>
<td></td>
<td>1.91</td>
<td>15.00</td>
</tr>
</tbody>
</table>

Figura 4.12 Alternativa 1, distribución de rápidas dentro del canal de descarga del aliviadero
Como se puede observar en la Figura 4.15, para la alternativa de diseño establecida (alternativa 2), el resalto hidráulico se desarrolla dentro del cuenco amortiguador; sin influencia del flujo dentro del canal de restitución de caudales al río.

<table>
<thead>
<tr>
<th>Caudal (m3/s)</th>
<th>Velocidad (m/s)</th>
<th>Calado (m)</th>
<th>Punto de medición</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rápida 1 $S_o=3.20%$</td>
<td>Rápida 2 $S_o=25.00%$</td>
<td>Rápida 3 $S_o=0.15%$</td>
</tr>
<tr>
<td>177.77</td>
<td>9.22</td>
<td>12.70</td>
<td>12.70</td>
</tr>
<tr>
<td></td>
<td>0.91</td>
<td>0.88</td>
<td>0.90</td>
</tr>
<tr>
<td>327.45</td>
<td>11.00</td>
<td>15.00</td>
<td>16.26</td>
</tr>
<tr>
<td></td>
<td>1.75</td>
<td>1.45</td>
<td>1.35</td>
</tr>
</tbody>
</table>
Figura 4.15 Alternativa 2: Distribución de datos de impacto en la sección inicial de la rápida 4 (la línea roja representa el final del cuenco amortiguador)

Izquierda: Se observa que existe un adecuado funcionamiento de los datos de impacto dentro del proceso de disipación de energía. Derecha: El resalto hidráulico se genera dentro del cuenco amortiguador y disminución de la influencia del resalto dentro del canal de restitución es sustancial

Finamente, se obtuvo una eficiencia de disipación de 55% relacionando la energía específica de entrada y salida del mismo, por lo cual las velocidades que se registraron dentro del canal de restitución son adecuadas (2.80 m/s).

4.3 Evaluación experimental del aliviadero con vertedero en laberinto

A través de dos modelos físicos, se ha realizado la evaluación hidráulica del diseño original de los aliviaderos con vertedero en laberinto Macul 1 y Macul 2, y los resultados se presentan a continuación.

4.3.1 Evaluación del diseño original – Aliviadero Macul 1

La Figura 4.16 muestra seis (6) secciones de interés establecidas en el modelo físico para la identificación de los resultados. El primer paso ha consistido en el análisis de la eficiencia en la descarga del vertedero tipo laberinto mediante la evaluación del coeficiente de descarga.
Así, en la Tabla 4-11, se presentan los resultados experimentales obtenidos en el modelo físico trasladados a prototipo a través de los factores de escala correspondientes a cada magnitud registrada, obteniendo un coeficiente de descarga de 4.12 para el caudal máximo de diseño.

<table>
<thead>
<tr>
<th>Caudal (m3/s)</th>
<th>Carga sobre la cresta del vertedero (m)</th>
<th>H_T/p</th>
<th>Coeficiente de descarga C_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>283.02</td>
<td>0.85</td>
<td>0.20</td>
<td>6.24</td>
</tr>
<tr>
<td>407.70</td>
<td>1.15</td>
<td>0.30</td>
<td>5.85</td>
</tr>
<tr>
<td>606.51</td>
<td>1.61</td>
<td>0.40</td>
<td>5.35</td>
</tr>
<tr>
<td>801.11</td>
<td>2.16</td>
<td>0.50</td>
<td>4.44</td>
</tr>
<tr>
<td>918.59</td>
<td>2.48</td>
<td>0.60</td>
<td>4.12</td>
</tr>
</tbody>
</table>

Se considera en h la carga de velocidad= $h+ V^2/2g$.

Cw se determina para un ancho de vertedero $W= 50$ m, ancho de emplazamiento del vertedero.

Por otro lado, se ha realizado el análisis de Q vs H_T/p obtenidos experimentalmente para establecer el nivel de ajuste de los resultados con respecto a los modelos matemáticos presentados por Darvas (1971), Magalhães (1985) y Lux and Hinckliff (1985) para el cálculo del caudal sobre vertederos en laberinto. En la Figura 4.17 se observa que los resultados obtenidos experimentalmente presentan una tendencia similar con respecto a los modelos matemáticos antes mencionados, pudiéndose notar que los resultados de laboratorio
obtenidos se ajustan más al modelo matemático dado por Darvas (1971) y Lux and Hinchliff (1985) para las relaciones H_T/p altas (0.5 y 0.6) y se sitúan entre el modelo de Darvas y el presentado por Magalhães (1985) para las relaciones H_T/p bajas (0.2 a 0.4). Es decir, que para H_T/p bajos se observa un incremento en el desempeño como lo haría Magalhães.

Una de las características que influyen en la capacidad de descarga del vertedero es la distribución del flujo de aproximación hacia la estructura. Con el fin de analizar tal capacidad y para las condiciones de caudales de ingreso dadas, se ha observado la distribución del flujo hacia el vertedero, que como se ilustra en la Figura 4.18 es uniforme.

![Figura 4.17 Caudal vs H_T/p para el vertedero en laberinto de geometría trapezoidal – Macul 1](image)

Se considera en H_T la carga de velocidad: $h + \frac{v^2}{2g}$.
Figura 4.18 Distribución del flujo de aproximación hacia el vertedero de excesos.
Superior: Caudal de 283.02 m3/s; Inferior: Caudal de diseño (AMP) de 918.59 m3/s. En ambos escenarios de caudal, se observa una distribución uniforme del flujo.

Por otra parte, el diseño del vertedero en laberinto establece utilizar pilas de 0.50 m de espesor en los vértices aguas abajo que sirven como estructuras de soporte de un puente que pase por sobre el mismo, y separadores de la lámina vertiente en los vértices aguas arriba, con el fin de optimizar la descarga. En este sentido, como se observa en la Figura 4.19 se han representado estos elementos para ser sujetos a evaluación.

El resultado de la evaluación del desempeño hidráulico de los elementos antes mencionados muestra que para el caudal de diseño (AMP) de 918.59 m3/s, los separadores de lámina vertiente en el vértice superior del módulo del vertedero no generan el efecto conocido como sumergencia local (Figura 4.20). La sumergencia local se produce cuando el caudal de evacuación excede la capacidad de descarga del módulo del vertedero, generando un incremento local de los niveles de agua, y en algunos casos supera la cota de la cresta.

Para ejemplarizar el efecto de sumergencia, se analizó el escenario de caudal superior al de diseño (1020.50 m3/s y 1095.40 m3/s). En la Figura 4.21, se observa que para un escenario de caudal de 1020.50 m3/s se genera el efecto de sumergencia local y para el caudal de 1095.40 m3/s se produce otro efecto conocido como sumergencia aguas abajo. Este último se presenta cuando el calado aguas abajo supera la altura de la cresta del vertedero, disminuyendo la eficiencia del vertedero. Por lo tanto, en el caso del vertedero en laberinto de Macul 1, se garantiza que para el caudal de diseño (AMP) no se producirá sumergencia local, con lo cual se garantiza la correcta eficiencia del vertedero.
Figura 4.19 Distribución de pilas intermedias (amarillo) y separadores de lámina vertiente (azul). Nótese que las pilas del vértice aguas abajo ocupan toda la longitud del vértice.

Figura 4.20 Influencia de pilas intermedias y separadores de lámina vertiente en el vertedero en laberinto. Caudal de diseño (AMP) de 918.59 m³/s.

Figura 4.21 Efectos de sumergencia en el módulo del vertedero en laberinto.
Izquierda: Sumergencia local Q= 1020.50 m³/s; Derecha: Sumergencia aguas abajo Q= 1090.40 m³/s.

Durante el estudio, se ha registrado tanto velocidades como calados en las zonas de aproximación al vertedero, en las rápidas y en el canal de restitución; obteniendo los resultados que se presentan en la Tabla 4-12. De ellos, se observa la presencia de velocidades del orden de 3.16 y 2.94 m/s en la zona de la rápida y en el canal de restitución y régimen de flujo en estas dos zonas del aliviadero se encuentran entonces en régimen subcrítico (Fr=0.42 y Fr= 0.39, respectivamente), resultados correspondientes al caudal de diseño (AMP).
Tabla 4-12 Resultados de parámetros medidos en el modelo físico – Macul 1

<table>
<thead>
<tr>
<th>Caudal (m3/s)</th>
<th>Parámetro Medido</th>
<th>Aproximación al vertedero tipo laberinto</th>
<th>Rápida 2</th>
<th>Inicio canal de restauración</th>
<th>Curva canal de restauración</th>
</tr>
</thead>
<tbody>
<tr>
<td>283.02</td>
<td>Velocidad (m/s)</td>
<td>1.31</td>
<td>1.83</td>
<td>1.37</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>Calado (m)</td>
<td>2.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>407.70</td>
<td>Velocidad (m/s)</td>
<td>1.38</td>
<td>2.67</td>
<td>2.08</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td>Calado (m)</td>
<td>3.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>606.51</td>
<td>Velocidad (m/s)</td>
<td>1.51</td>
<td>2.83</td>
<td>2.13</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>Calado (m)</td>
<td>4.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>801.11</td>
<td>Velocidad (m/s)</td>
<td>1.94</td>
<td>3.02</td>
<td>2.60</td>
<td>2.72</td>
</tr>
<tr>
<td></td>
<td>Calado (m)</td>
<td>5.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>918.59</td>
<td>Velocidad (m/s)</td>
<td>2.11</td>
<td>3.16</td>
<td>2.78</td>
<td>2.94</td>
</tr>
<tr>
<td></td>
<td>Calado (m)</td>
<td>6.03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De lo anteriormente mencionado se puede observar en la Figura 4.21, que el régimen de flujo es subcrítico debido a la pendiente de 0.00% aguas abajo del vertedero en laberinto y que la velocidad del flujo es de 2.11 m/s.

Figura 4.22 Régimen de flujo supercrítico a través del cuenco y canal de restauración; Caudal de diseño (AMP) de 918.59 m3/s.

4.3.2 Conclusiones y recomendaciones – Aliviadero Macul 1

Se evaluó la capacidad de descarga del vertedero de excesos tipo laberinto, obteniéndose un coeficiente de descarga promedio de 4.12. Además, el modelo matemático dado por Darvas (1971) presenta el mejor desempeño para la estimación del caudal sobre un vertedero tipo laberinto.

El flujo de aproximación hacia la estructura de descarga tipo laberinto presenta una distribución uniforme, midiéndose velocidades superficiales promedio de 2.11 m/s, para un
caudal de descarga de aproximadamente 918.59 m³/s, correspondiente al caudal de diseño (AMP) del vertedero Macul 1.

Para tal caudal, las velocidades medidas en la rápida 2 alcanzan valores promedios de 3.16 m/s, y en el canal de restitución varían en un rango de 2.70 a 3.00 m/s en el diseño original.

Dentro del análisis de las alternativas de cuenco amortiguador para optimizar la eficiencia de disipación, para las diferentes condiciones valores de velocidades en el cuenco que varían del orden de 1.90 m/s a 2.20 m/s, para calados del orden de 7.00 m.

Para la condición de la construcción del canal con pendiente 0% se obtuvo una velocidad promedio de 2.82 m/s y en el canal de restitución del orden de 3 m/s a 3.70 m/s, para calados de aproximadamente 6m.

Para el caso del vertedero Macul 1, la influencia de las pilas y separadores de caudal no generan un incremento en el calado aguas arriba del vertedero y la descarga presentaría sumergencia local dentro de los módulos sólo para caudales mayores al caudal de diseño (AMP). Además, cualitativamente se puede observar que la longitud de descarga efectiva del vertedero (120 m) solo se vería afectada para caudales mayores al de diseño.

4.3.3 Alternativas planteadas al diseño original del aliviadero con vertedero en laberinto – Macul 1

Se ha analizado una alternativa que permita disminuir la velocidad de salida al canal de restitución para garantizar la estabilidad del flujo dentro del canal, minimizando los efectos erosivos que se presentaría por efecto de las velocidades altas que se presentan. De ahí que, la alternativa que se evaluó consiste de un cuenco amortiguador aguas abajo del vertedero aguas abajo con diferentes longitudes y profundidad (Figura 4.23).

![Figura 4.23 Alternativa de disipación de energía aguas abajo del vertedero.](image-url)
En la Tabla 4-13 se muestra un resumen de los parámetros obtenido durante los ensayos. Para diferentes escenarios con los cuales se configuro la geometría del cuenco amortiguador, se ha establecido que las velocidades no disminuyen significativamente debido al caudal muy elevado que influye sobre la descarga.

<table>
<thead>
<tr>
<th>Características del cuenco</th>
<th>Caudal de diseño (AMP) (m³/s)</th>
<th>Parámetro Medido</th>
<th>Punto de medición</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cuenco Umbral</td>
<td>Curva canal de restitución</td>
</tr>
<tr>
<td>Longitud: 45 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidad: 2 m</td>
<td>918.59</td>
<td>Velocidad (m/s)</td>
<td>1.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calado (m)</td>
<td>7.30</td>
</tr>
<tr>
<td>Longitud: 30 m</td>
<td>918.59</td>
<td>Velocidad (m/s)</td>
<td>1.91</td>
</tr>
<tr>
<td>Profundidad: 2 m</td>
<td></td>
<td>Calado (m)</td>
<td>7.42</td>
</tr>
<tr>
<td>Longitud: 30 m</td>
<td>918.59</td>
<td>Velocidad (m/s)</td>
<td>2.17</td>
</tr>
<tr>
<td>Profundidad: 1.20 m</td>
<td></td>
<td>Calado (m)</td>
<td>6.30</td>
</tr>
<tr>
<td>Longitud: 20 m</td>
<td></td>
<td>Velocidad (m/s)</td>
<td>2.17</td>
</tr>
<tr>
<td>Profundidad: 2 m</td>
<td>918.59</td>
<td>Calado (m)</td>
<td>7.25</td>
</tr>
</tbody>
</table>

Una vez analizados los resultados obtenidos de las velocidades probando las diferentes alternativas en el aliviadero Macul 1, se concluye que no existe una disminución representativa de las velocidades con respecto a las registradas en la evaluación para el caudal de diseño (AMP), por lo que no se sugieren cambios en el diseño original.

4.3.4 Evaluación del diseño original – Aliviadero Macul 2

Se inicia con la evaluación de la capacidad de descarga del vertedero en laberinto para lo cual se ha registrado la carga de agua sobre la cresta del vertedero para diferentes caudales de excedencia establecidos en el diseño. La Tabla 4-14 presenta los resultados experimentales obtenidos en el modelo físico y trasladados a prototipo. Así, para el caudal de diseño (AMP) de 1017.50 m³/s, el valor de la carga máxima es de h= 2.99 m y el coeficiente de descarga es de Cw= 3.23.

<table>
<thead>
<tr>
<th>Caudal (m³/s)</th>
<th>Carga sobre el vertedero (m)</th>
<th>H₀/p</th>
<th>Coeficiente de descarga Cw</th>
</tr>
</thead>
<tbody>
<tr>
<td>271.42</td>
<td>0.84</td>
<td>0.20</td>
<td>6.28</td>
</tr>
<tr>
<td>306.91</td>
<td>0.95</td>
<td>0.20</td>
<td>5.91</td>
</tr>
</tbody>
</table>
Se considera en \(h \) la carga de velocidad= \(h + \frac{v^2}{2g} \).

Cw se determina para un ancho de vertedero \(W = 50 \text{ m} \), ancho de emplazamiento del vertedero.

De forma similar que, en el caso anterior, se realizó el análisis de \(H_T/p \) vs Q obtenidos experimentalmente para establecer el nivel de ajuste de los resultados con respecto a los modelos matemáticos presentados por Darvas (1971), Magalhães (1985) y Lux and Hinchliff (1985) para el cálculo del caudal sobre vertederos en laberinto. Dado que el análisis se realizó para \(0.20 < H_T/p < 0.60 \), en la Figura 4.24 se observa que los resultados experimentales presentan una tendencia similar con respecto a los modelos matemáticos antes mencionados. Sin embargo, cuando \(0.20 < H_T/p < 0.60 \) el modelo que mejor se ajusta es el dado por Hinchliff (1985), para determinar el caudal sobre un vertedero tipo laberinto.

Figura 4.24 Caudal vs \(H_T/p \) para el vertedero en laberinto trapezoidal – Macul 2

Se considera en \(H_T \) la carga de velocidad \(h + \frac{v^2}{2g} \).

Se conoce que una de las características que influyen en la capacidad de descarga a través de un vertedero es la distribución del flujo de aproximación hacia la misma. En este sentido, se visualiza una distribución uniforme del flujo de aproximación hacia la estructura de descarga (ver la Figura 4.25). Para un caudal de hasta 879.95 m\(^3\)/s (menor al caudal de diseño (AMP) pero 2.5 veces superior al de un período de retorno de 100 años de 341.67
la descarga es uniforme sobre cada uno de los módulos del vertedero. No obstante, para el caudal de diseño (AMP) 1017.50 m³/s se observan alteraciones del flujo tanto aguas arriba como aguas abajo.

Como se puede ver en la Figura 4.26, separadores de caudal fueron colocados en el vértice superior del vertedero con el objetivo de lograr una adecuada separación de la lámina vertiente. Sin embargo, el calado que se genera sobre el aliviadero para el caudal de diseño (AMP) de 1017.50 m³/s coincide prácticamente con la altura del separador, generando un ahogamiento parcial de la napa. Consecuentemente, la longitud efectiva de descarga disminuye en relación con la que se diseñó el vertedero tipo laberinto (120 m).

Para identificar claramente la distribución y comportamiento del flujo dentro del aliviadero para diferentes escenarios de caudales se han definido secciones dentro del mismo, las mismas que se muestran en la Figura 4.27.
Figura 4.27 Distribución de secciones dentro del aliviadero - Macul 2.

Para diferentes escenarios de caudal, desde 271.42 m3/s hasta el caudal de diseño (AMP) de 1017.50 m3/s, se han analizado las características de flujo que influyen sobre la descarga de caudales en el aliviadero (velocidad y el calado) tanto aguas arriba como aguas abajo del vertedero. Con estas condiciones de frontera, en la Tabla 4-15, se observa que para el caudal de diseño (AMP) la velocidad en la rápida 3 es de 13.55 m/s; la misma que se considera elevada e influye directamente sobre la eficiencia en la disipación que tiene el cuenco amortiguador. Como se puede ver en la Figura 4.28, dentro del cuenco amortiguador se produce una elevada turbulencia que influye directamente sobre la distribución del flujo dentro del canal de restitución.

<table>
<thead>
<tr>
<th>Caudal (m3/s)</th>
<th>Parámetro Medido</th>
<th>Punto de medición</th>
<th>Aproximación (Sección 2)</th>
<th>Rápida 2 (Sección 5)</th>
<th>Rápida 3 (Sección 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>271.42</td>
<td>Velocidad (m/s)</td>
<td>1.01</td>
<td>6.97</td>
<td>10.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calado (m)</td>
<td>5.34</td>
<td>1.13</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>306.91</td>
<td>Velocidad (m/s)</td>
<td>1.15</td>
<td>7.97</td>
<td>11.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calado (m)</td>
<td>5.45</td>
<td>1.44</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>342.03</td>
<td>Velocidad (m/s)</td>
<td>1.24</td>
<td>8.40</td>
<td>11.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calado (m)</td>
<td>5.63</td>
<td>1.78</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>530.76</td>
<td>Velocidad (m/s)</td>
<td>1.75</td>
<td>8.91</td>
<td>11.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calado (m)</td>
<td>6.14</td>
<td>2.01</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>609.44</td>
<td>Velocidad (m/s)</td>
<td>1.95</td>
<td>9.06</td>
<td>11.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calado (m)</td>
<td>6.29</td>
<td>2.16</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>Caudal (m3/s)</td>
<td>Velocidad (m/s)</td>
<td>Calado (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>718.97</td>
<td>2.18</td>
<td>6.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.63</td>
<td>2.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.25</td>
<td>1.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>879.95</td>
<td>2.50</td>
<td>7.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.59</td>
<td>3.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.36</td>
<td>2.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1017.50</td>
<td>2.73</td>
<td>7.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.43</td>
<td>3.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.55</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En las rápidas 1 y 2 (Figura 4.29) se producen ondas cruzadas supercríticas frente a cada vértice del módulo del vertedero sin influir sobre la capacidad de descarga del mismo, no obstante; la distribución del flujo que ingresa al cuenco amortiguador no es uniforme. La presencia de ondas supercríticas interactúa entre sí, sin embargo; la longitud corta que tiene la rápida 2 no permite que el flujo se estabilice antes del ingreso a la rápida 3, por tanto, se genera alteración del mismo en el ingreso al cuenco amortiguador.

Figura 4.28 Condiciones de descarga para el caudal de diseño (AMP) de 1017.50 m3/s sobre el vertedero en laberinto.

Figura 4.29 Distribución de ondas cruzadas en el aliviadero, Q= 718.97 m3/s– Macul 2

Izquierda: Presencia de ondas cruzadas supercríticas aguas abajo del vertedero. Derecha: Influencia de ondas cruzadas sobre la distribución del flujo de ingreso al cuenco amortiguador. Las condiciones del flujo de ingreso
al cuenco amortiguador no son adecuadas en influyen sobre la eficiencia de disipación; existe alteración en los patrones del flujo.

El desempeño hidráulico del cuenco amortiguador se ha evaluado en función de las velocidades de aproximación registradas principalmente en el tramo final de la rápida 3, cuya pendiente So=20.50%. Se ha determinado un número de Froude Fr= 2.88 en la aproximación al cuenco amortiguador al final de la rápida 3, común a velocidad de 13.55 m/s y un calado contraído de 2.25 m. Los parámetros registrados y presentados en la Tabla 4-16 corresponden a un caudal de diseño (AMP) 1017.50 m3/s.

Tabla 4-16 Registro de parámetros medidos en la rápida 3 (Sección 6).

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Modelo</th>
<th>Prototipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calado</td>
<td>m</td>
<td>0.05</td>
<td>2.25</td>
</tr>
<tr>
<td>Ancho</td>
<td>m</td>
<td>1.11</td>
<td>50.00</td>
</tr>
<tr>
<td>Velocidad</td>
<td>m/s</td>
<td>2.02</td>
<td>13.55</td>
</tr>
<tr>
<td>Número de Froude</td>
<td>-</td>
<td>2.88</td>
<td>2.88</td>
</tr>
</tbody>
</table>

Para los parámetros de flujo registrados en este escenario de caudal, la eficiencia de disipación obtenida es de 76%. Sin embargo, aún persisten velocidades de 3.68 m/s a la salida del cuenco amortiguador que influyen sobre el lecho de fondo del canal de restitución (Tabla 4-17). La eficiencia del cuenco amortiguador se ha analizado para la condición de máxima descarga del vertedero. Así, para el caudal de diseño (AMP) de 1017.50 m3/s, se observa que la longitud de desarrollo del resalto hidráulico alcanza los 30 m, 13 m dentro del canal de restitución. De igual forma, por la influencia del resalto hidráulico aguas arriba de la sección 6 se ha visualizado desbordamiento del flujo sobre los muros laterales del cuenco, con lo cual; la altura de los muros es insuficiente (ver Figura 4.30).

Tabla 4-17 Parámetros del Cuenco Disipador levantados en laboratorio.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Modelo</th>
<th>Prototipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calado conjugado</td>
<td>m</td>
<td>0.22</td>
<td>9.72</td>
</tr>
<tr>
<td>Calado sobre el Umbral de Salida</td>
<td>m</td>
<td>0.16</td>
<td>7.20</td>
</tr>
<tr>
<td>Velocidad de salida del cuenco</td>
<td>m/s</td>
<td>0.57</td>
<td>3.79</td>
</tr>
<tr>
<td>Velocidad en el centro del canal de restitución</td>
<td>m/s</td>
<td>0.55</td>
<td>3.68</td>
</tr>
</tbody>
</table>
Figura 4.30 Evaluación de la eficiencia del cuenco amortiguador. \(Q = 1017.50 \text{ m}^3/\text{s} \).

Izquierda: Se observa el desbordamiento del flujo que ingresa al cuenco (líneas azules). Derecha: Se observa la sección de influencia del resalto hidráulico dentro del canal de restitución (línea amarilla). Los muros laterales del aliviadero están subestimados en el tramo del cuenco amortiguador; y la longitud de desarrollo del resalto supera la longitud efectiva del cuenco amortiguador.

Finalmente, y por influencia del resalto hidráulico, se ha identificado procesos de socavación al inicio del canal de restitución en todo el ancho del canal, 13 m aguas abajo del cuenco y una profundidad de 0.90 m. De ahí que, después de la zona de socavación se observa un frente de acumulación del material erosionado, incrementado los calados de agua del canal (Figura 4.31).

Figura 4.31 Influencia del resalto hidráulico sobre el canal de restitución

Izquierda: Se observa la socavación generada en la salida del cuenco por efecto del resalto hidráulico desarrollado dentro del canal de restitución. Derecha: Se forma una barrera de materia por el efecto erosivo del resalto hidráulico. Condición presentada para el caudal de diseño (AMP) de 1017.50 \(\text{m}^3/\text{s} \).

4.3.5 Conclusiones de la evaluación al diseño original – Aliviadero Macul 2

Una vez que se realizaron los estudios en modelo físico a escala reducida 1:45 del aliviadero con vertedero en laberinto Macul 2, se presentan las conclusiones obtenidas en base al análisis de resultados.
El coeficiente de descarga de obtenido fue de 3.23 para el caudal de diseño (AMP) de 1017.50 m3/s, con una carga sobre la cresta del vertedero de 2.99 m. No obstante, estos resultados difieren del coeficiente de descarga y la carga sobre el vertedero (2.14 y 2.30 m, respectivamente) establecidas en el diseño.

Para dicho caudal el flujo de aproximación hacia el vertedero tiene una distribución no uniforme generándose alteraciones en el flujo de descarga. Así, se registran velocidades superficiales de 2.73 m/s, mientras que; las velocidades medidas en la rápida 2 y 3 son de 11.43 m/s y 13.55 m/s, respectivamente.

El separador de caudales colocado aguas arriba del eje vertedero cuyo objetivo es distribuir adecuadamente el flujo de descarga en el vertedero y proporcionar un adecuado proceso de disipación y aireación de la lámina vertiente sin influenciar sobre la capacidad de descarga, no cumple completamente su cometido en el caso del caudal de diseño (AMP). En el caso del vertedero Macul 2 la lámina vertiente, por influencia del separador de la napa, genera un incremento en el calado aguas arriba del vertedero y la descarga está parcialmente sumergida para el caudal máximo evaluado. Además, cualitativamente se puede observar que la longitud de descarga efectiva del vertedero (120 m) se ve afectada.

Asimismo, dadas las características de descarga del flujo a través del vertedero en laberinto, se observan efectos de ondas cruzadas sobre la distribución del flujo aguas abajo del mismo que influyen en el ingreso al cuenco amortiguador. En otras palabras, existe alteración del flujo al ingreso del cuenco amortiguador que influye sobre el funcionamiento adecuado del aliviadero generándose desbordamiento del caudal.

Dadas las condiciones de régimen supercrítico que tiene el flujo en la sección de ingreso al cuenco amortiguador el número Froude determinado es de Fr= 2.88 para una velocidad de 13.55 m/s. Con todo, la velocidad de salida del cuenco disipador es de 3.68 m/s.

También, para el caudal de diseño (AMP), se ha relacionado la energía específica a la entrada y salida del cuenco, determinando una eficiencia del cuenco del 76%. Sin embargo, debido a las altas velocidades en el canal de restitución y la longitud restringida del cuenco amortiguador, se identifica la presencia de procesos erosivos y de acumularon del material erosionado al inicio del canal de restitución, influenciando directamente sobre el calado aguas arriba del mismo.

Para el caudal máximo evaluado (AMP), la carga máxima sobre el vertedero es de 2.99 m, con lo cual la altura de la pila intermedia (o separador) del vertedero es insuficiente y se recomienda incrementar su longitud en 0.50 m.
Se observa que para los caudales de crecida evaluados existe desbordamiento sobre los muros de las rápidas y del cuenco amortiguador, por lo que es preciso revisar la altura de los muros, considerando los calados producidos en estas estructuras.

Finalmente, considerando las altas velocidades registradas a la salida del cuenco y en el canal de restitución, se han analizado alternativas que permitan mejorar la disipación en el cuenco amortiguador. Es preciso indicar que sería pertinente analizar otros aspectos relevantes como las características de descarga de la lâmina vertiente y la longitud efectiva real vertedero, pero dadas las limitaciones presentadas en el modelo hidráulico, la investigación se ha centrado principalmente en optimizar la eficiencia de disipación del cuenco amortiguador.

4.3.6 Alternativas al diseño original: Estudios experimentales para la optimización de la disipación en el cuenco amortiguador

Para efectos de mejorar la disipación en el cuenco amortiguador, se han realizado varios ensayos estableciendo diferentes alternativas. Adicionalmente, debido al desbordamiento de caudal que se producía sobre los muros de las rápidas y cuenco amortiguador en el diseño original, se ha elevado la altura de los mismos, para evaluar tales alternativas.

Es preciso indicar que la limitación de las alternativas planteadas es la longitud del cuenco disipador, es decir; aguas abajo no es posible incrementar su longitud debido que no existe un talud de apoyo para los muros laterales en la margen izquierda.

Alternativa 1: Plantea la ubicación de 4 filas de dados en el inicio de la rápida 3 y se evaluó para el caudal de diseño (AMP) de 1017.16 m³/s. En la Figura 4.32 se muestra un esquema de esta alternativa.

![Figura 4.32 Esquema de distribución de dados de impacto en la alternativa 1.](image)

En la Figura 4.33 se observa que para el caudal de diseño (AMP) de 1017.50 m³/s se genera desbordamiento de caudal sobre los muros en la entrada del cuenco. Además, se
observa que la influencia de los dados de impacto dentro cuenco amortiguador fue mínima debido a que la distribución del flujo se presenta superficialmente. La velocidad registrada en la rápida 2 ha sido de 11.51 m/s y no se registrala velocidad en la rapida 3 debido a la alteracion del flujo generada.

De igual forma, la velocidad a la salida del cuenco es de 3.53 m/s, la cual no difiere en relacion a la medida en la evaluacion del diseno original, por lo tanto; la eficiencia de disipacion se mantiene. Dentro del canal de restitucion la velocidad de salida del cuenco resulta estable.

Figura 4.33 Representación de la alternativa 1 en el modelo físico y los efectos generados dentro del cuenco. Izquierda: Distribución de dados de impacto dentro del aliviadero, en la rápida 3 y cuenco amortiguador. Derecha: Se mantiene la alteración del flujo de aproximación a la rápida 3 por efecto de las ondas cruzadas supercíticas y el resalto influye sobre el canal de restitución. Q= 1017.50 m³/s (AMP).

Alternativa 2: Plantea el incremento de la longitud de cuenco amortiguador a 39 m (hacia atrás) y establece un perfil hidrodinámico en la unión entre las rápidas 2 y 3. Asimismo, el caudal evaluado en esta alternativa es el de la AMP de 1017.16 m³/s. En la Figura 4.34 se muestra un esquema de esta alternativa y en la Figura 4.35 la representación de la alternativa en el modelo hidráulico.

Figura 4.34 Esquema de propuesto en la alternativa 2.
En esta alternativa se observa que la longitud de desarrollo del resalto hidráulico se genera dentro del cuenco. Las velocidades registradas en la rápida 2 y 3 han sido de 10.21 m/s y 12.34 m/s, respectivamente. Así mismo, la velocidad de salida del cuenco amortiguador y dentro del canal de restitución es de 3.40 m/s y 2.90 m/s, respectivamente. La eficiencia en la disipación de energía del cuenco en este caso es del 80%.

![Imagen de alternativa 2: Distribución del flujo dentro del cuenco amortiguador, Q= 1017.50 m³/s.](image)

Nótese que el resalto hidráulico se desarrolla dentro del cuenco amortiguador y la baja influencia del resalto sobre el canal de restitución.

En consecuencia, de las alternativas establecidas para incrementar la eficiencia de disipación del cuenco amortiguador se ha establecido que la alternativa 2 es la más adecuada dado que la eficiencia en la disipación es del 80% y la velocidad de restitución es de 2.90 m/s; condiciones que se ajustan a los requerimientos del proyecto.

4.4 Análisis comparativo del desempeño hidráulico de vertederos en laberinto

Se ha realizado un análisis comparativo del mejor modelo de ajuste existente para estimar el coeficiente de descarga sobre un vertedero tipo laberinto. De los modelos matemáticos dados por Darvas (1971), Magalhães (1985) y Lux and Hinchliff (1985), Darvas (1971) es el modelo que mejor ajuste presenta con relación a los resultados obtenidos. La Figura 4.36 presenta la relación del coeficientes de descarga vs Hₚ/p obtenido para los dos vertederos en laberinto analizados, donde ambos vertederos tienen similares características tanto geométricas como hidráulicas.

Estudios han demostrado que la capacidad de un vertedero en laberinto es función de varios parámetros (carga sobre la cresta del vertedero, de su longitud efectiva y del coeficiente de descarga). Sin embargo, para las características geométricas de los vertederos en laberinto analizados (Datos del diseño: **Macul 1**: h/p=0.59; w/p= 2.78; α/α_max= 0.76; l/w=3, **Macul 2**: h/p=0.56; w/p= 2.78; α/α_max= 0.76; l/w=3) se establece que el modelo de
Darvas (1971) tiene un buen grado de ajuste con los resultados obtenidos en el vertedero Macul 1. Sin embargo, para el vertedero Macul 2 el coeficiente de descarga Cd obtenido experimentalmente es menor al esperado con el modelo de Darvas. (Figura 4.36). Los modelos de Magalhães (1985) y Lux and Hinchliff (1985) proponen coeficientes de descarga bastante menores a los obtenidos experimentalmente en esta tesis y el modelo de Darvas, aunque las tendencias se mantienen.

Figura 4.36 Comparación del coeficiente de descarga experimental.

Se considera en H_T la carga de velocidad: $h + v^2/2g$.

Por otro lado, si comparamos los resultados experimentales con los modelos matemáticos establecidos por Tullis et al. (1995), B. M. Crookston (2010) y Bilhan et al. (2016), para $H_T/p < 0.9$, se puede notar que los modelos estarían subestimando el valor del coeficiente de descarga C_d Figura 4.37. Si bien es cierto, los resultados guardan una tendencia similar con respecto a los modelos matemáticos establecidos por los primeros autores analizados, el nivel de ajuste es más visible para los resultados de Macul 2 en el caso de relaciones H_T/p altas, es así que se puede observar como Macul 2 va convergiendo hacia los modelos matemáticos propuestos por B. M. Crookston (2010) y Bilhan et al. (2016).
Para facilidad de análisis, la Figura 4.38 compila los resultados obtenidos experimentalmente (en términos de C_d vs H_T/p) con respecto a los diferentes modelos matemáticos detallados en la sección 2.2.2, generalizando en una ecuación que utilice un coeficiente de descarga de 0 a 1. En esta figura se puede confirmar que el coeficiente de descarga C_d obtenido en modelo físico del vertedero Macul 1 (rango: $0.2 < H_T/p < 0.6$) claramente se ajusta al modelo matemático establecido por Darvas (1971). Por otro lado, los resultados experimentales del modelo físico del vertedero Macul 2 (rango: $0.2 < H_T/p < 0.8$) se aproximan de mejor modo al modelo matemático proporcionado por Bilhan et al. (2016), sobre todo para relaciones H_T/p altas.

La consideración de los elementos separadores de lámina vertiente ubicados en los vértices del vertedero en laberinto permite distribuir el flujo lo más uniforme posible sobre el mismo. El efecto que producen estos elementos incidió directamente sobre la descarga y además generaron adecuados procesos de disipación en cada módulo. Estas características fueron observadas claramente en el vertedero Macul 1 que cuenta con separadores de lámina en cada vértice y el vertedero Macul 2 únicamente en los vértices aguas arriba.

Consecuentemente, y con todo lo mencionado anteriormente, se puede concluir que la diferencia entre los resultados experimentales obtenidos radica en la definición de los criterios de diseño partiendo de la relación H_T/p. Si bien es cierto, ambos vertederos fueron diseñados considerando que la relación h/p máxima era de 0.6, sin embargo; al evaluar
experimentalmente el caso del vertedero Macul 2, la relación H_T/p para la carga máxima de diseño fue de 0.8 difiriendo así del criterio de diseño asumido.

Figura 4.38 Comparación del coeficiente de descarga experimental (C_d vs H_T/p).

Se considera en H_T la carga de velocidad: $h + v^2/2g$.
CAPÍTULO 5
Conclusiones y Recomendaciones

Toda vez que se ha realizado la investigación en modelos físicos para la optimización de estructuras hidráulicas no convencionales presentadas como casos de estudio, en el presente capítulo se exponen las conclusiones relacionadas con los hallazgos más importantes.

5.1 Aliviaderos con vertederos en abanico

Se evaluó el funcionamiento del aliviadero con vertedero en abanico y se plantearon alternativas para optimizar su desempeño hidráulico. A continuación, se presentan algunas conclusiones relevantes de la investigación:

- Los vertederos en abanico se presentan como una adecuada solución de ingeniería para conseguir evacuar grandes volúmenes de agua en secciones limitadas, generando bajos niveles de agua sobre la cresta del vertedero con relación a los vertederos frontales.

- La eficiencia en la descarga del vertedero en abanico, calculada en términos del caudal unitario q (m3/s) y obtenida experimentalmente, es similar a la estimada según los criterios teóricos para un rango de $0.3 < H/H_d < 0.80$. Para $H/H_d > 0.8$ la eficiencia del vertedero empieza a disminuir por efecto de la distribución de velocidades de aproximación hacia el vertedero en abanico.

- El coeficiente de descarga C_d obtenido experimentalmente para el vertedero en abanico varía entre 2.06 y 2.15 para $0.3 < H/H_d < 1.0$. Sin embargo, el rango de variación de los C_d estarían subestimados con respecto al recomendado por USBR (1987) para vertederos frontales tipo Creager (entre 2.15 y 2.21) y sobreestimados con respecto al recomendados Sotelo Ávila (1994) (entre 1.96 y 2.03) para vertederos en abanico. El criterio establecido por Alegret Breña and Martínez González (2008) no se ajusta a los resultados obtenidos dentro de la presente investigación puesto que el rango recomendado por el autor está entre 1.41 y 1.50.
Aguas abajo del vertedero se configura la transición que permite que el flujo pase al canal de descarga sin influir sobre el desempeño hidráulico del vertedero. Entonces, para la geometría de transición establecidas aguas abajo del vertedero los resultados tanto cuantitativos como cualitativos indican que no existe influencia de calado sobre la descarga. En el primer lugar, se observó que el vertedero no sufre ahogamiento, y en el segundo lugar; se observa que cuando $H/H_d = 1$ la relación $C/C_d = 1$, esto implica que las condiciones impuestas aguas abajo no afectan su funcionamiento.

El diseño del aliviadero establece aguas abajo del vertedero una sección de control (dentro de la transición) para garantizar una transición uniforme del régimen de flujo (de subcrítico a supercrítico) hacia el canal de descarga, y además; que se genere entre el vertedero y la sección de transición el resalto hidráulico. Por el contrario, según los resultados obtenidos (Figura 4.7), no se ha podido identificar la sección de control dentro de la transición, sino más bien, en tal sección se genera el calado máximo del resalto (cresta del resalte hidráulico).

Dado que el vertedero en abanico está configurado por arcos semicirculares, el flujo que descarga sobre este presenta una distribución tridimensional que se concentra hacia el eje del aliviadero generando un resalto hidráulico localizado. Es recomendable que el resalto hidráulico se genere aguas arriba de la zona de transición para que el flujo que ingresa al canal de descarga tenga una distribución uniforme.

Dado que el régimen de flujo dentro del canal de descarga es supercrítico ($Fr>1$), la investigación se enfocó en garantizar que las condiciones del flujo de ingreso al cuenco disipador sean estables. Así, para el caudal máximo de diseño (AMP) evaluado se modificó la geometría del canal de descarga (rápidas) e implementaron bloques de disipación dentro en el tramo final del canal de descarga.

Con la alternativa 2 seleccionada, el resultado conseguido a fue disminuir velocidades de ingreso al cuenco disipador de 20.20 m/s a 16.00 m/s, es decir; la disminución del número de Froude fue de 7.54 (Diseño original) a 4.39 (Alternativa 2). Además, complementado con el cambio en la geometría del cuenco disipador se obtuvo incrementar la eficiencia de disipación hasta el 55% y por ende la velocidad media dentro del canal de restitución fue de 2.80 m/s.
5.2 Aliviaderos con vertedero en laberinto

Se evaluó el funcionamiento de los aliviaderos con vertedero en laberinto y se plantearon alternativas para optimizar su desempeño hidráulico. A continuación, se presentan algunas conclusiones relevantes de la investigación:

- Dado que las características de los vertederos de los dos aliviaderos analizados son semejantes la investigación se ha centrado en la evaluación del desempeño hidráulico individual y el análisis comparativo con criterios de diseño expuestos por algunos autores.

- Es conocido que la capacidad de un vertedero en laberinto es función de la carga sobre la cresta, de la longitud efectiva de la cresta del vertedero y del coeficiente de descarga C_d. Además, el coeficiente de descarga es función de otros parámetros geométricos del vertedero tales como: altura del vertedero (P), espesor del muro del vertedero (t), ángulo de los muros del vertedero (α), geometría de la cresta del vertedero y de la carga total sobre la cresta del vertedero (H_T).

- La investigación se enfocó en analizar los casos de estudio basados según los criterios de diseño, es decir; las características de los vertederos en laberinto analizados son:
 - **Macul 1**: $h/p=0.59$; $w/p=2.78$; $\alpha/\alpha_{max}=0.76$; $\alpha=14.93^\circ$; $l/w=3$,
 - **Macul 2**: $h/p=0.56$; $w/p=2.78$; $\alpha/\alpha_{max}=0.76$; $\alpha=14.93^\circ$; $l/w=3$, y para ambos casos, la geometría de la cresta del vertedero es de cuarto de círculo.

- Los vertederos en laberinto presentados como casos de estudio fueron considerados para evacuar caudales de diseño elevados (AMP), los que a su vez generan altas cargas sobre la cresta. Según los resultados obtenidos, para el caso del vertedero Macul 1, el rango de variación de H_T/P esta entre 0.2 y 0.6, mientras que; para el caso del vertedero Macul 2 el rango de variación de H_T/P esta entre 0.2 y 0.8. (H_T considera la carga total sobre el vertedero $H_T=h+V^2/2g$).

- De los modelos dados por Darvas (1971), Magalhães (1985) y Lux and Hinchliff (1985), el que mejor ajuste presenta en relación a los resultados experimentales es el dado por Darvas (1971). Por el contrario, los resultados obtenidos en el vertedero
Macul 2 establecen que 0.20 < \(H_T/p \) < 0.80 muestran que el modelo de Darvas estaría sobrestimando los coeficientes de descarga.

- Por otro lado, los modelos matemáticos establecidos por Tullis et al. (1995), B. M. Crookston (2010) y Bilhan et al. (2016), para \(H_T/p < 0.9 \), subestima el valor del coeficiente de descarga \(C_d \). Si bien es cierto, los resultados guardan una tendencia similar con respecto a los modelos matemáticos establecidos por los autores, el nivel de ajuste es más visible para los resultados de Macul 2, esto es; para \(H_T/p \) altos la curva de ajuste experimental Macul 2 va convergiendo hacia los modelos matemáticos propuestos por B. M. Crookston (2010) y Bilhan et al. (2016).

- Con todo lo mencionado anteriormente, se puede concluir que la diferencia entre los resultados experimentales obtenidos entre el vertedero Macul 1 y Macul 2 radica principalmente en la definición de los criterios de diseño partiendo de la relación \(H_T/p \). Así, en el caso de los vertederos analizados se asumieron como criterios de diseño 0.2 < \(h/p \) < 0.6 (sin considerar \(H_T= h+V^2/2g \)) para establecer el coeficiente de descarga \(C_d \) de los mismos. Al evaluar en modelo físico y considerar la carga de velocidad \(H_T \), en el caso del vertedero Macul 1 la relación \(H_T/p \) vario entre 0.2 y 0.6 y en el caso del vertedero Macul 2 la relación \(H_T/p \) estuvo entre 0.2 y 0.8.

- Dentro de la investigación ambos vertederos fueron evaluados con separadores de lámina vertiente para el caudal de diseño (AMP). De ahí que, los separadores colocados en el vértice superior del módulo del vertedero no generan la zona de interferencia del flujo. Sin embargo, para el caso del vertedero Macul 2, el calado que se genera sobre el aliviadero para el caudal de diseño (AMP) coincide prácticamente con la altura del separador, generando un ahogamiento parcial de la napa, por lo tanto; la longitud efectiva del vertedero y el coeficiente de descarga disminuyen, En este sentido, se recomienda la colocación de estos elementos para incrementar el desempeño del vertedero en cada vértice del mismo.

5.3 **Aplicación de la modelación física en ingeniería hidráulica**

- Una de las principales limitaciones dentro de la presente investigación fue el análisis de los criterios de similitud que en modelación física se deben cumplirse para
garantizar que la representación de los diferentes parámetros y patrones de flujo sean representativos con el prototipo. Así, el análisis de la escala en este caso se convirtió en un factor muy importante ya que los caudales que fueron analizados, en cada caso, correspondían a los de la avenida máxima probable (AMP) lo cual complica la selección de escala de acuerdo a la capacidad disponible en laboratorio.

- Si bien es cierto, existen criterios de diseño de vertederos en abanico y laberinto que ha permitido a los proyectistas el abordaje de alternativas de diseño hidráulico, resulta imprescindible la utilización de modelos físicos para evaluar el desempeño hidráulico de estas estructuras, más aun cuando las condiciones del flujo son complejas como es el caso de los vertederos en abanico y laberinto y teniendo en cuenta que los caudales de diseño de estas estructuras son elevados y su fallo podría resultar catastrófico. Con la presente investigación, además de comprobar el adecuado funcionamiento de los vertederos y sus estructuras complementarias y proponer alternativas de mejora a los diseños originales, se ha podido abundar en el análisis del estado del arte existente en la literatura y de esta manera contribuir al futuro diseño de vertederos en abanico y laberinto.

5.4 **Recomendaciones para futuros estudios**

- La presente investigación se realizó implementando un modelo físico para analizar las características hidráulicas de cada caso de estudio considerando las limitaciones existentes dentro de las instalaciones experimentales tanto espaciales como de equipamiento. Por lo tanto, se recomienda en futuros estudios evaluar los resultados obtenidos usando diferentes escalas en modelo físico de manera que nos permita tener una mayor amplitud de análisis y poder observar si en algún caso se producen efectos de escala.

- Si bien es cierto se han realizado importantes investigaciones para definir modelos matemáticos que nos permitan estimar la capacidad de descarga de vertederos en laberinto. Sin embargo, no existe mucha información sobre la utilización de separadores de lámina vertiente en aliviaderos con relaciones \(H_T/P \) altas. Por lo tanto, se recomienda para futuras investigaciones profundizar el análisis del comportamiento
hidráulico con estos elementos vinculados a su geometría y cómo pueden influir en la capacidad de descarga y eficiencia en la disipación de energía. De este estudio se estima que estos elementos son deseables, además que pueden tener funciones adicionales como servir de pilas al puente sobre el vertedero que es de uso común.
Bibliografía

Kumar, S., Ahmad, Z., Mansoor, T., and Himanshu, S. K. (2012). Discharge Characteristics

Promas-Universidad de Cuenca. (2017a). Diseños Definitivos para el Plan de
Aprovechamiento y Control del Agua en la Provincia de Los Ríos, PACALORI. Cuenca, Ecuador.

