Assessing the SNR influence in the estimation of the mean frequency of lower limbs sEMG signals

Rojas, A., Farfan, A., Mora, E., Minchala, L.I., Wong, S.

Abstract

The mean frequency of the power spectrum (MNF) is commonly used to describe the frequency content of an electromyographic (EMG) signal. The objective of this study is to determine the minimum/desirable signal to noise ratio (SNR) value to achieve a reliable measurement of the MNF in superficial EMG (sEMG) signals of lower limbs during gait. To this end, measurements of MNF and SNR were taken in nine muscles of 21 subjects, and recorded signals were contaminated with different noise levels. The minimum threshold of a desirable SNR was determined using the K-means algorithm. A lower bound of 5.51 dB was determined as the SNR value for sEMG acquisition, while 12.28 dB is the desirable SNR value for recording sEMG signals. The methodology presented throughout this paper helps in the determination of the minimum SNR value necessary to validate the sEMG acquisition process that can be used, for example, as a control signal for identifying motion intention in the development of control systems devoted for a lower limb exoskeleton. © 2003-2012 IEEE.
1. Reaz, M.B.I., Hussain, M.S., Mohd-Yasin, F.
 Techniques of EMG signal analysis: Detection, processing, classification and applications
 (Open Access)
 doi: 10.1251/bpo115
 View at Publisher

2. Nanthavanij, S., Deivanayagam, S.
 On the assessment of muscle fatigue rate via various EMG frequency spectral parameters
 doi: 10.1016/0169-8141(89)90004-8
 View at Publisher

3. Altamirano, A., Vera, A., Munoz, R., Leija, L., Wolf, D.
 Time and Frequency Patterns Identification of sEMG Signals Using Hilbert-Huang Transform
 (2017) IEEE Latin America Transactions, 15 (10), art. no. 8071231, pp. 1881-1887.
 doi: 10.1109/TLA.2017.8071231
 View at Publisher

 Myoelectric signal processing using time-frequency distribution
 doi: 10.1109/TLA.2013.6502811
 View at Publisher

5. Karlsson, S., Gerdlle, B.
 Mean frequency and signal amplitude of the surface EMG of the quadriceps muscles increase with increasing torque - A study using the continuous wavelet transform
 doi: 10.1016/S1050-6411(00)00046-8
 View at Publisher

6. Knaflitz, M., Bonato, P.
 Time-frequency methods applied to muscle fatigue assessment during dynamic contractions
 doi: 10.1016/S1050-6411(99)00009-7
 View at Publisher
Frequency analysis of lower extremity electromyography signals for the quantitative
diagnosis of dystonia
View at Publisher

8. Jamal, M.Z.

9. Khanjani, I., Khoshdel, V., Akbarzadeh, A.
Estimate human-force from sEMG signals for a lower-limb rehabilitation robot
ISBN: 978-150905963-8
doi: 10.1109/IranianCEE.2017.7985275
View at Publisher

10. Aguilar-Sierra, H., Yu, W., Salazar, S., Lopez, R.
Design and control of hybrid actuation lower limb exoskeleton (Open Access)
www.hindawi.com/journals/ame/
doi: 10.1177/1687814015590988
View at Publisher

Evaluation of a double threshold algorithm to detect electromyographic activity in the healthy and paretic tibialis anterior muscle
http://www.springer.com/series/7403
ISBN: 978-331913116-0
doi: 10.1007/978-3-319-13117-7_238
View at Publisher

12. Gerdle, B., Karlsson, S.
The mean frequency of the EMG of the knee extensors is torque dependent both in the unfatigued and the fatigued states
View at Publisher

13. Bilodeau, M., Schindler-Ivens, S., Williams, D.M., Chandran, R., Sharma, S.S.
EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women
doi: 10.1016/S1050-6411(02)00050-0
View at Publisher
14 Gerdle, B., Henriksson-Larsen, K., Lorentzon, R., Wretling, M.-L.
Dependence of the mean power frequency of the electromyogram on muscle force and fibre type
View at Publisher

15 Jiroumaru, T., Kurihara, T., Isaka, T.
Establishment of a recording method for surface electromyography in the iliopsoas muscle
www.elsevier.com/locate/jelekin
doi: 10.1016/j.jelekin.2014.02.007
View at Publisher

16 Kaur, M., Mathur, S., Bhatia, D., Verma, S.
EMG analysis for identifying walking patterns in healthy males
doi: 10.1109/PRIME.2015.7251335
View at Publisher

17 Opar, D.A., Williams, M.D., Timmins, R.G., Dear, N.M., Shield, A.J.
Knee flexor strength and bicep femoris electromyographical activity is lower in previously strained hamstrings
doi: 10.1016/j.jelekin.2012.11.004
View at Publisher

18 Karlsson, S., Yu, J., Akay, M.
Enhancement of spectral analysis of myoelectric signals during static contractions using wavelet methods
doi: 10.1109/10.764944
View at Publisher

19 Smale, K.B., Shourijeh, M.S., Benoit, D.L.
Use of muscle synergies and wavelet transforms to identify fatigue during squatting
www.elsevier.com/locate/jelekin
doi: 10.1016/j.jelekin.2016.04.008
View at Publisher

Olimex, no. June
Rojas, A.; Universidad de Cuenca, Cuenca, Ecuador; email:andres.rojas@ucuenca.edu.ec
© Copyright 2018 Elsevier B.V., All rights reserved.