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Simple Summary: A machine learning algorithm, Random Forest, was used to establish species dis-
tribution models for five riffle beetle genera (Elmidae) in the Paute river basin (southern Ecuador), con-
sidering meteorology, land use, hydrology, and topography as environmental/explanatory variables.
Alterations to riparian vegetation, canopy presence/absence, precipitation, elevation, and slope ac-
counted for most of the Elmidae spatial variability. Clean and healthy streams were predicted to be the
most likely places for Elmidae genera to occur. Additionally, specific ecological niches were predicted
for each Elmidae genus. These findings can contribute significantly to conservation and restoration
efforts in the study basin and could have implications for similar eco-hydrological systems.

Abstract: Genera and species of Elmidae (riffle beetles) are sensitive to water pollution; however,
in tropical freshwater ecosystems, their requirements regarding environmental factors need to be
investigated. Species distribution models (SDMs) were established for five elmid genera in the Paute
river basin (southern Ecuador) using the Random Forest (RF) algorithm considering environmental
variables, i.e., meteorology, land use, hydrology, and topography. Each RF-based model was trained
and optimised using cross-validation. Environmental variables that explained most of the Elmidae
spatial variability were land use (i.e., riparian vegetation alteration and presence/absence of canopy),
precipitation, and topography, mainly elevation and slope. The highest probability of occurrence
for elmids genera was predicted in streams located within well-preserved zones. Moreover, specific
ecological niches were spatially predicted for each genus. Macrelmis was predicted in the lower and
forested areas, with high precipitation levels, towards the Amazon basin. Austrelmis was predicted to
be in the upper parts of the basin, i.e., páramo ecosystems, with an excellent level of conservation of
their riparian ecosystems. Austrolimnius and Heterelmis were also predicted in the upper parts of the
basin but in more widespread elevation ranges, in the Heterelmis case, and even in some areas with a
medium level of anthropisation. Neoelmis was predicted to be in the mid-region of the study basin in
high altitudinal streams with a high degree of meandering. The main findings of this research are
likely to contribute significantly to local conservation and restoration efforts being implemented in
the study basin and could be extrapolated to similar eco-hydrological systems.
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1. Introduction

Freshwater ecosystems have been severely altered by human activities and are signif-
icantly vulnerable to climate change [1,2]. Hence, there is an urgent need to understand
the spatial and temporal patterns of aquatic organisms to maintain and restore aquatic
biodiversity [3]. In this context, species distribution models (SDMs) relate taxa occurrence
with the local environmental conditions and provide a spatial prediction of taxa habitat
suitability on the entire study area and, optionally, across time [4]. Thus, SDMs can be
particularly useful for biodiversity conservation policies, since they can identify suitable
areas for preserving threatened taxa or priority areas for future sampling efforts [5]. SDMs
have been used for identifying trends of spatial distribution and habitat limitations for
some specific aquatic organisms, e.g., benthic macroinvertebrates [6–8], fishes [9,10], and
algae [11]. Furthermore, SDMs could help manage water resources in a country such
as Ecuador, which is facing a severe decline in the ecological integrity of its rivers and
lakes [12,13]. However, to our knowledge, just one work has been carried out in the country
using the SDMs framework, particularly targeting benthic macroinvertebrates taxa [14].

In this context, riffle beetles (i.e., Coleoptera: Elmidae) are cosmopolitan freshwater
coleopterans that inhabit clean and well-oxygenated running waters in their larval and adult
stages. Regarding ecosystem functionality, the Elmidae members are collector-gatherers
and scrapers that feed mainly on algae and detritus. Further, elmid larvae and adults are
an important part of the diet of fish. Elmidae taxa are sensitive to changes in the habitat
structure and physicochemical conditions of aquatic ecosystems [15–17]. Therefore, elmids
are considered excellent indicators of water quality integrity and perhaps also of climate
change [18].

In the Paute river basin (PRB), which is one of the most important hydrological sys-
tems of Ecuador owing to its significant hydroelectric potential [19,20], elmids have been
identified as the key taxa to establish adequate stream ecohydrological characterisation [21].
Notwithstanding the usefulness of elmids as bioindicators of freshwater ecosystems in-
tegrity in tropical zones [22], there is little research that focuses on the individual ecological
requirements of the set of genera that the Elmidae family encapsulates. The problem
with higher taxonomic resolution data is that they include several lower resolution taxa,
which may have different environmental/ecological preferences. Thus, working on higher
taxonomic resolution (e.g., Elmidae family) may mask the ecological sensitivities of taxa
of lower resolution (e.g., genera of Elmidae) [23]. In this context, assessing the suitable
habitats of different elmid genera is important to drive key study site conservation and
restoration efforts. Thus, one way to cover the lack of knowledge about individual elmid
ecohydrological preferences is through SDMs.

Further, while the species modelling framework is similar in the terrestrial, marine, and
freshwater realms, each realm comprises specific challenges for combining the spatial scale,
the environmental data, and the species records for building reliable models [24]. Thus, the
choice of the modelling tool is an essential aspect of the development of SDMs. Worldwide,
the Maximum Entropy Algorithm [25,26] is the most used tool for developing SDMs using
the MaxEnt software [27]. Nevertheless, considering some common negative features of
the SDMs, mainly dealing with the class imbalance nature of SDMs [28] and the availability
of too few samples in large under-sampled areas [29], the use of the Random Forest (RF)
algorithm is an attractive alternative [30–32]. Correspondingly, the current research echoes
this latter trend by using the RF algorithm to model the occurrence probability of the elmid
genera in the study basin. Within this frame of reference, the general goal of the current
research was to develop and assess the SDMs models of riffle beetles (Coleoptera: Elmidae)
in the Paute river basin. The main specific goals of the current research were (1) building
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different SDMs for five genera of Elmidae recorded in the study basin, (2) identifying the
most important environmental factors that explain the spatial distribution of the elmid
genera, and (3) performing a congruence assessment of the different SDMs of the study
elmid genera.

2. Materials and Methods
2.1. Study Area

The Paute river basin (PRB), in the south of Ecuador (Figure 1), has an area of 6442 km2,
including the eastern lower portion towards the Amazon plateau. Its elevation ranges
between 410 and 4687 m above sea level (a.s.l.), and slopes vary between 25% and 50%.
The lower temperatures correspond to the western Andes range with a mean daily value of
about 6 ◦C (at about 3500 m a.s.l.), while the warmest areas are situated in the Amazonian-
influenced valleys and subtropical zones, with a mean daily value of 24 ◦C; nevertheless,
a remarkable diurnal amplitude was observed. Due to the altitudinal gradient, mean
annual rainfall oscillates in intensity and duration, with the lowest value of 660 mm at the
basin’s centre and the highest observed value exceeding 3400 mm near the basin outlet. On
the other hand, meteorological stations located at higher elevations (above 3000 m a.s.l.)
receive between 1000 and 1400 mm [33]. Two major cities, namely Cuenca and Azogues,
are in the basin, with approximately 600,000 and 40,000 inhabitants, respectively. Important
conservation zones are in the study basin, the most relevant (Figure 1) the Cajas National
Park (CNP) and the Sangay National Park (SNP), both UNESCO World Heritage Sites.
However, despite these conservation efforts, domestic wastewaters, agricultural runoff,
animal husbandry, and industrial effluents are negative factors that are known to influence
the surface water quality (WQ) of the study basin [21,34,35].
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2.2. Sampling of Riffle Beetles

The benthic macroinvertebrate community was sampled at 67 sites located in the
study basin throughout four years (2010–2012 and 2015) by the former Ecuadorian National
Secretary of Water (SENAGUA), Santiago River Hydrographic Demarcation (DHS), and
the Municipal Public Enterprise of Telecommunications, Drinking Water, Sewerage and
Sanitation of Cuenca (ETAPA EP). Samples were collected using a D-frame kick net (25 cm
aperture, 0.5 mm mesh) [36]. Sampling encompassed all existing microhabitats charac-
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terised by different depths, substrates, and water velocities. Macroinvertebrate samples
were preserved in 70% ethanol and sorted using a stereomicroscope. Using these samples,
the presence–absence data records of elmids were obtained (Figure 2). The sampling sites
were visited four times per year (on average). Some were sampled more frequently be-
cause they were located either at highly impacted sites or, on the contrary, at unaltered
environmental (i.e., reference) locations.
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Riffle Beetles and Their Presence–Absence Records

A total of 1672 elmid records were compiled and grouped into five genera (i.e., ngen = 5)
that belong to the subfamily Elminae [37], namely, Austrelmis (g1, 8.4%), Austrolimnius (g2,
26.6%), Heterelmis (g3, 30.3%), Macrelmis (g4, 20.0%), and Neoelmis (g5, 14.7%). The research
was limited to genera as most records of Elmidae from the study basin were predominantly
larvae, which can only be identified at the genus level [38]. Herein, to use a record of
an elmid genus, such as presence data, to perform the modelling process, the minimal
sample size [39] was greater than two individuals per taxa. The latter was carried out to
minimise the probability that an individual of a given taxa was recorded accidentally (i.e.,
fortuitous arrival through a strong current or a dead individual drifted downwards by the
river current, etc.) in the sampling station of interest.

2.3. Environmental Variables

This study used twelve environmental variables (12env) as the (independent) descrip-
tive factors to explain the spatial variability of elmid genera. The twelve variables (Table 1)
were selected from a previous set of 20 variables (env) upon a Pearson’s correlation analysis
that enabled excluding redundant env characterised by positive or negative correlation
magnitudes above 0.75 [40]. This was done to achieve a parsimonious model and to min-
imise the risk of overfitting it. The correlation analysis was performed with the R package
‘ENMTools 1.0’ [41]. The eight excluded env were: solar radiation, roughness index, stream
power index, flow accumulation, Strahler stream order, canopy height, evapotranspiration,
and environmental temperature.
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The unit of analysis for this research was the hydrographic network of the basin
generated from a Digital Elevation Model (DEM), a LIDAR product of the SIGTIERRAS
project (http://www.sigtierras.gob.ec accessed on 7 February 2022) of the Ecuadorian
government [42]. Its original horizontal resolution is 3 m, whilst its vertical precision
is ±1.5 m. However, to reduce computational running times to reasonable levels, its
horizontal resolution was resampled up to 12 m using the Bilinear algorithm available in
the Resampling set of tools of ArcGIS 10.4.1 software [43,44]. The respective resampled
product (DEMr) was used in the rest of the analysis.

The hydrographic network (Hynet) was obtained using the Hydrology toolbox of
ArcGIS 10.4.1, which applies the method for extracting hydrographic networks from
DEMs [45,46]. Thus, the following steps were applied: (1) pre-processing the DEMr;
(2) determining the flow direction; (3) calculating the cumulative amount of the flow con-
fluence; (4) determining the confluence threshold; and (5) generating the hydrographic
network [47,48]. Hereafter, the spatial distribution of each one of the 12env was incor-
porated into a raster layer that was previously cropped according to the Hynet mask,
producing a continuum of environmental predictors along the stream network [49].

Table 1. Description of the twelve environmental variables (12env) used in developing the species
distribution models (SDMs).

Source
Variable Used Tool in

ArcGis/
Methodology

Unit Abbreviation Ecological Importance Range
Name Type

DEM of SIGTIERRAS
project

(Corral and Montiel
Olea, 2020)

Elevation Continuous Spatial Analyst >
Hydrology > Fill m a.s.l Elev

Temperature tends to be colder at
higher elevations, e.g., in páramo

ecosystems, influencing water
dissolved oxygen values [50–52].

411–4212

Slope Continuous Spatial Analyst >
Surface > Slope Degree Slp

Water velocity and, consequently,
oxygen content, are related to

slope [21].
0–74.1

Flow
direction Categorical

Spatial Analyst >
Hydrology >

Flow Direction
(-) Fdir

Flow direction is related to
substrate accumulation and

streambed heterogeneity [53].
1–128

Shreve
stream order Continuous

Spatial Analyst >
Hydrology >
Stream Order

(-) Shreve
High-stream order values are

indicators of bigger
discharges [21,54].

1–5367

Eastness Continuous Spatial Analyst >
Map Algebra >

Raster
Calculator [55]

(-)

East
These factors are related to the terrain

declivity, stream course direction,
and luminosity, which affect water

temperature, oxygen [56], and algae
growth. Algae are food sources for

certain elmids [57].

−1–1

Northness Continuous Ntns

Sinuosity Continuous

Stream Gradient
and Sinuosity >

Shapefiles >
Calculate

Sinuosity [58]

(-) Snty
The sinuosity is related to the

accumulation of sediments and
channel heterogeneity [59].

1–4.8

National Institute of
Meteorology and

Hydrology (http://
www.inamhi.gob.ec

accessed on 7
February 2022)

Precipitation Continuous
Spatial Analyst >
Map Algebra >

Raster Calculator
mm PP

Precipitation is directly related to
water availability and

indirectly to water velocity and
oxygen content [60].

586.5–
3237.7

Geopedological map,
scale 1:25,000;

SIGTIERRAS project
(Corral and Montiel

Olea, 2020)

Lithology Categorical

Conversion > To
Raster >

Polygon to
Raster

(-) Ltlgy

Elements in the water and
sediments of rivers are present

because of the natural weathering
of the surrounding lithology [61].
These elements conditionate the

elmids [62].

1–78

Soil type Categorical

Conversion > To
Raster >

Polygon to
Raster

(-) Soils Water chemistry of rivers is affected
by surrounding soil units [63]. 1–10

http://www.sigtierras.gob.ec
http://www.inamhi.gob.ec
http://www.inamhi.gob.ec
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Table 1. Cont.

Source
Variable Used Tool in

ArcGis/
Methodology

Unit Abbreviation Ecological Importance Range
Name Type

Land Use map,
scale 1:100,000
(MAE, 2013)

Riparian
alteration Continuous [64,65] % Rip-alt

The riparian zones regulate water
temperature and allochthonous

organic matter inputs and mitigate
the effects of anthropogenic

pressures [21,66].

0–99

Global Land Analysis
and Discover

(https://glad.umd.
edu/dataset/ge

accessed on 7
February 2022)

Canopy Continuous

Data
Management >

Raster >
Raster

Processing
> Resample

(-) Cnpy

Canopy attenuates the sunlight,
regulates the water temperature of

streams and favours streambed
heterogeneity [66,67].

0–100

Eastness (East) and northness (Ntns) provide continuous measures describing geo-
graphical orientation in combination with slope. For the Northness, +1 represents the
north and −1 south directions. For Eastness, +1 represents the east and −1 the west direc-
tions [68]. Sinuosity (Snty) provides the degree of meandering of the stream channel. In
general, Snty = 1 is linked to a straight channel, and Snty = 4.8 is the maximum degree of
meandering in the Paute river basin hydrographic network. The Lithology (Ltlgy) variable
implies 78 lithological groups for the Paute river basin. The first half of these 78 groups
correspond to sands, sandstones, clasts, and schists; the second half corresponds to silts,
clays, pyroclasts, and undifferentiated metamorphic rocks. The soil type (Soils) variable
accounts for the ten soil units that exist in the study basin, i.e., Andisols (1), Inceptisols (2),
Mollisols (3), Vertisols (4), Entisols (5), Alfisols (6), Oxisols (7), Histosols (8), Ultisols (9),
and miscellaneous (10). Canopy (Cnpy) ranges from 1 to 100, with 1 representing riparian
areas without the presence of forest and 100 riparian areas with high forest presence.

2.4. Species Distribution Models (SDMs) Using Random Forest (RF) Algorithm

The Random Forest (RF) algorithm [69] is an ensemble of classification or regression
trees and is widely used in research, including SDMs analyses [70]. It performs classification
analysis by building many decision trees from bootstrap data set samples. The final model
prediction is performed by averaging the predictions made by each tree in the forest. In
this study, RF was implemented using the R Package ‘Biomod2’ [71] to model the spatial
distribution of the presence–absence of elmid genera (i.e., occurrence probability) as a
function of the 12env.

Each elmid genus was separately modelled, i.e., five RF modelling processes were per-
formed. The tuned parameters to estimate the different RF models were the number of trees
(ntree) and the number of variables randomly selected at each node (mtry), given that the RF
algorithm is prone to be sensitive to these parameters [72,73]. Herein, for parameterising
the RF algorithm, the strategy of Strobl et al. [74,75] was implemented. It was based in a
grid search through which all possible combinations of given discrete parameter regions
were evaluated. Values of mtry = 5 and ntree = 3000 were adopted in this study after a
sensitivity analysis that showed more consistent results with these values.

The different RF runs were carried out using the K-fold cross-validation (CV) method,
in which the data were divided into K disjoint sets (folds), and the K-th fold was used as an
independent test (i.e., validation) set. The remaining (K –1) folds were used to train the RF
model and find its different parameters, after which model validation took place using the
test set. This process was repeated n times. The error estimation was averaged over all n
trials to get the total effectiveness of the model [76]. For the current research, K = 4 with
n = 3 repetitions was used for each elmid genera, producing twelve runs (models) for each
of the 5 genera. Trade-offs were involved when selecting K number of folds [77]. Using
K = 4 (implying the use of 75% of the data for training and 25% for validation) has been
reported as an excellent value to perform a realistic classification assessment [78].

Since the available response variables, i.e., presence–absence records of elmid genera,
were imbalanced (Figure 2), RF was chosen for this study because it is known to work well

https://glad.umd.edu/dataset/ge
https://glad.umd.edu/dataset/ge
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with imbalanced data sets in a classification framework [79–81]. For further details about
RF, the reader is kindly referred, for instance, to [82,83].

For evaluating the RF outputs, the area under the receiver operating characteristic
(ROC) curve was used, which was applied for the analysis of classification performances in
the framework of binary classification of samples as positive (P) or negative (N). In this con-
text, the ROC curve is defined [84] as a plot of x = 1 − SpP (specificity of the positive class,
also known as False Positive Rate, FPR) versus y = SnP (sensitivity of the positive class, also
known as True Positive Rate, TPR). Given the ROC curve for a classifier, the area under the
curve (AUC) measures its overall diagnostic performance, with AUC = (SpP + SnP)/2 [85].
Since the AUC is a portion of the area of a unit square, its value varies between 0 and
1, with 1 being its optimal value. For each elmid genus, there were 12 output models
because of the cross-validation process; thereby, 60 AUC values (i.e., ngen x 12) were ob-
tained in total. For each elmid genus, its 12 AUC values were aggregated into a single
value using central tendency measures. Before this aggregating process, the normality
of each set of 12 AUC values was checked [35,86] using the Shapiro–Wilk (S–W) test [87]
considering a 95% confidence level. For a particular elmid genus, if the S–W test suggested
normality, the mean AUC value was used for aggregating; otherwise, the median was
assigned as the aggregated AUC value [88,89]. For the interpretation of the AUC values,
it followed the proposal of Hosmer et al. [90], where an AUC = 0.5 could be interpreted
as “no discrimination”; 0.5 < AUC < 0.7 as “poor discrimination”; 0.7 ≤ AUC < 0.8 as “ac-
ceptable discrimination”; 0.8 ≤ AUC < 0.9 as “excellent discrimination”; and AUC ≥ 0.9 as
“outstanding discrimination”.

Assessing Significant Environmental Variables

The ‘Biomod2’ R package [91] uses a random permutation procedure to estimate the
importance (varimp) of each 12env. The procedure (Figure 3) is independent of the mod-
elling technique. It uses Pearson’s correlation between the standard prediction (i.e., fitted
values) and the predictions obtained by focusing the simulations on a given environmental
variable and randomly permutating its value for every simulation. If the correlation is
high, i.e., showing little difference between the standard and a given prediction, the given
variable is considered unimportant for the model. This is repeated several times for each
given variable, and Pearson’s mean correlation coefficient over the runs is kept. Herein,
the number of permutations to estimate the varimp for every one of the 12env was 5.

As a result, the R ‘Biomod2’ package produces a ranking of variables and their cor-
responding varimp values. In this context, for each elmid genus, there were 12 output
models because of the cross-validation process, thus 144 varimp values (i.e., 12env x 12
output models). In five separate analyses (i.e., one for each genus), for each 12env, their
12 varimp values were aggregated. Thus, as in the case of AUC, before the aggregating
process took place, the normality trend of each set of 12 varimp values was checked using
the S–W test, considering a 95% confidence level. For each elmid genus, their aggregated
varimp values from each 12env were expressed as percentages and ranked in descending
order. However, there is not a statistically based varimp threshold on distinguishing be-
tween important and non-important env to explain the spatial distribution of elmids. Thus,
a variable segregation analysis was carried out for each genus. In this analysis, the impor-
tant set of env (env-imp) was identified by removing, one by one, the non-important env
with respect to the (standard) RF-based model containing all the 12env. On every occasion,
after a given env was removed from a previous RF-based model, the complete modelling
approach was repeated so that a cross-validation analysis was entirely performed, and
the respective aggregated AUC value was obtained for the newer model. This variable
segregation approach was carried out until the best RF-based model, formed by the set of
env-imp, was identified by the highest aggregated AUC value. In this analysis, variables
were removed by considering the ranked varimp information so that the env associated
with lower varimp was removed first.
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Additionally, for each env-imp of elmid genera, response curves were created using
the AUC data. Thus, to define the optimal range for the distribution of each genus per
each env-imp, a cluster analysis through the k-means method was implemented using the
AUC values. With this procedure, it is possible to distinguish the statistical cut-off AUC
values (i.e., borders or thresholds) and, thereby, the optimal range of preference of each
genus for each env-imp. K-means clustering is a non-hierarchical clustering method that
assigns each object to the group with the closest centroid by calculating the centroid of
each group [92]. This study applied this method using the Euclidean distance as the
similarity measure between objects. In the k-means algorithm, the number of clusters
is specified a priori, usually according to some hypothesis [93]; however, a more robust
statistical procedure uses internal validation indices [94]. Using quantities and features
inherent in the data, an internal index measures the appropriateness of clustering partitions
without external information [95]. Herein, an internal validity index was applied, namely,
the Silhouette Coefficient (SC). The Cluster Validity Analysis Platform (CVAP) was used
for this purpose [94]. SC [96] is a dimensionless measure that evaluates the quality of
compactness and separation of clusters; with an upper bound equal to 1, the optimum k
value corresponds to its largest average. The inspected number of clusters k was from 2 to 5.

2.5. Prediction of Spatial Distribution

In the ‘Biomod2’ R package, the final generated models using the environmental space
(env-imp) were projected within the Hynet to create the spatial predictions for each elmid
genera [97]. These SDMs contain the occurrence probability values for each elmid genera.
Correspondingly, values close to 0 indicate probable absences, and values close to 1 suggest
probable presences. The twelve SDMs outputs for each genus of the Elmidae family were
exported in ESRI raster format (GRID) to facilitate their processing/averaging using the
Raster Calculator tool available in ArcGIS 10.4.1 [91]. As a result, one final SDM for each
elmid genus was created, i.e., SDMg1, . . . , SDMg5. Further, to improve the visualisation of
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these SDMs, each one of them was reclassified considering three probability classes of the
spatial occurrence of modelled taxa, i.e., low (C1, 0–0.33), medium (C2, 0.3–0.66) and high
(C3, 0.66–1). This number of classes was chosen following a previous study (Sotomayor
et al., 2020, 2021) that concluded that three classes are adequate for characterising the water
quality in the Paute river basin.

2.6. Congruency of the Predicted Spatial Distribution of the C3 Probability of Occurrence of
Elmid Genera

The congruency of the C3 class of occurrence probability of elmid genera was assessed
by its visual comparison with the land use (LU)–land coverage (LC) distribution in the
study basin [98]. The LU–LC data were reclassified to describe the spatial distribution of the
anthropogenic impact (higher or lower) level, which was compared to the distribution of
the C3 class of occurrence probability of elmid genera. This latter distribution was obtained
by merging the respective spatial distribution of every one of the five study genera. The
original LU–LC classes [98] were the following: (1) altered vegetation; (2) woody native
vegetation; (3) without cover/urbanised, (4) páramo ecosystem; and (5) water. The higher
anthropogenic impact class was defined upon the reclassification of LU–LC classes 1 and 3,
whilst the lower anthropogenic impact class was defined upon classes 2, 4, and 5. Thus,
these anthropogenic impact classes are not the result of any additional calculation of an
index or a factor but just a simple reclassification of the original LU–LC information. ArcGIS
10.4.1 was used for all the respective Geographic Information Systems (GIS) analyses.

3. Results
3.1. Species Distribution Models (SDMs)

A significantly outperforming RF (i.e., aggregated AUC values) was observed when
only the informative environmental variables (i.e., env-imp) were used in the modelling
process. The statistical performance of the RF models, i.e., the aggregated AUC values
linked to each SDM of elmid genera (Table 2), suggested that the RF model for Austrolimnius,
Austrelmis, and Macrelmis had the best performance (i.e., excellent discrimination), followed
by Heterelmis and Neoelmis (i.e., acceptable discrimination) [90]. The aggregated AUC
values ranged from 0.76 to 0.89 (Table 2). The spatial extent for each genus of the Elmidae
family upon their probability of occurrence ranges (i.e., C1, C2, and C3) indicated that
Austrolimnius and Heterelmis are the taxa with the most widespread spatial probability of
occurrence in the study site. Macrelmis would occur, in its great majority, in the lowest basin
areas, toward the Amazon basin. On the contrary, Austrelmis is likely to occur in the higher
elevations of the basin, especially in the protected zones such as the Cajas National Park
(CNP) and the Sangay National Park (SNP). Neoelmis shows low and medium probabilities
of occurrence in the studied basin (Table 2, Figure 4).

Table 2. Random Forest predictions for each genus of the Elmidae family. The aggregated area under
curve (AUC) values are the result of considering either all the independent variables (“step 1”) or
only the significant variables identified as truly important for explaining the spatial probability of
occurrence of elmids (“step 2”). “*” indicates that the median was chosen as the aggregated AUC
value. SDM = species distribution model. Probability of occurrence class: low (C1), medium (C2),
high (C3).

AUC SDM of Probability of Occurrence

Genus
Mean/Median

Probability Range
Spatial Extent (%)

(Step 1) (Step 2) C1 C2 C3

Austrelmis 0.76 0.83 0.00–0.94 52.8 35.4 11.9
Austrolimnius 0.87 0.89 * 0.00–1.00 25.0 37.4 37.7

Heterelmis 0.76 0.79 0.01–0.99 33.3 34.9 31.7
Macrelmis 0.76 0.82 0.00–0.94 28.6 41.4 30.0
Neoelmis 0.70 0.76 0.00–0.87 48.1 48.9 2.9



Biology 2023, 12, 473 10 of 21

Biology 2023, 12, x FOR PEER REVIEW 10 of 22 
 

 

Macrelmis 0.76 0.82 0.00–0.94 28.6 41.4 30.0 
Neoelmis 0.70 0.76 0.00–0.87 48.1 48.9 2.9 

  

Figure 4. Spatial distribution of the probability of occurrence for the five genera of Elmidae in the 
Paute river basin, considering three classes, i.e., low (C1), medium (C2), and high (C3). Sub-basins: 
1 = Sidcay, 2 = Collay, 3 = Cuenca, 4 = Jadán, 5 = Juval, 6 = Machángara, 7 = Magdalena, 8 = Mazar, 9 
= Paute, 10 = Pindilig, 11 = Púlpito, 12 = Santa Bárbara, 13 = Burgay, 14 = Tarqui, 15 = Tomebamba, 
16 = Yanuncay, 17 = Paute bajo, and 18 = Negro. 

3.2. Assessing Significant Environmental Variables 
The env that showed the highest association with the spatial distribution of Elmidae 

were slope, eastness, elevation, precipitation, Shreve stream order, lithology, canopy, per-
centage of riparian alteration, flow direction, and sinuosity (Table 3). Northness and soil 
types were non-important variables. The response curves of the important variables (env-

imp) for each genus and their optimal probability range of preference are presented in Fig-
ure 5. The first env-imp for all genera of the Elmidae family was the most important for 
modelling the spatial distribution of the occurrence probability of a given elmid genus 
(Table 3). The curves of the first env-imp differed from the symmetric bell-shaped form. 
They exhibited clear peaks and depressions (Figure 5), indicating the variable ranges as-
sociated with higher (and lower) values of the probability of occurrence of elmid genera. 
Further, the env-imp that were lower in relevance (Table 3) had less discriminatory power 
in modelling the spatial distribution of the occurrence probability of a given elmid genus 
and, as such, exhibited fewer clear peaks and depressions (Figure 5). 

Table 3. Environmental variables that were identified as important to explain the spatial variability 
of each genus of the Elmidae family. The importance value (varimp) for each variable is expressed in 
percentage (“*” indicates that the median central tendency measure was used to define the aggre-
gated variable value). Cnpy = Canopy; Elev = Elevation; East = Eastness; Fdir = Flow direction; Ltlgy 
= Lithology; PP = Precipitation; Rip-alt = Riparian alteration; Shreve = Shreve stream order; Slp = 
Slope; Snty = Sinuosity. 

Genera Environmental Variable and Its Weight (%) 
Austrelmis Elev * PP * East * Slp * Rip-alt *  

Figure 4. Spatial distribution of the probability of occurrence for the five genera of Elmidae in the
Paute river basin, considering three classes, i.e., low (C1), medium (C2), and high (C3). Sub-basins:
1 = Sidcay, 2 = Collay, 3 = Cuenca, 4 = Jadán, 5 = Juval, 6 = Machángara, 7 = Magdalena, 8 = Mazar,
9 = Paute, 10 = Pindilig, 11 = Púlpito, 12 = Santa Bárbara, 13 = Burgay, 14 = Tarqui, 15 = Tomebamba,
16 = Yanuncay, 17 = Paute bajo, and 18 = Negro.

3.2. Assessing Significant Environmental Variables

The env that showed the highest association with the spatial distribution of Elmi-
dae were slope, eastness, elevation, precipitation, Shreve stream order, lithology, canopy,
percentage of riparian alteration, flow direction, and sinuosity (Table 3). Northness and
soil types were non-important variables. The response curves of the important variables
(env-imp) for each genus and their optimal probability range of preference are presented
in Figure 5. The first env-imp for all genera of the Elmidae family was the most important
for modelling the spatial distribution of the occurrence probability of a given elmid genus
(Table 3). The curves of the first env-imp differed from the symmetric bell-shaped form.
They exhibited clear peaks and depressions (Figure 5), indicating the variable ranges as-
sociated with higher (and lower) values of the probability of occurrence of elmid genera.
Further, the env-imp that were lower in relevance (Table 3) had less discriminatory power in
modelling the spatial distribution of the occurrence probability of a given elmid genus and,
as such, exhibited fewer clear peaks and depressions (Figure 5).
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Figure 5. AUC response curves (red line) of each genus of the Elmidae family, namely: Austrelmis (g1),
Austrolimnius (g2), Heterelmis (g3), Macrelmis (g4), and Neoelmis (g5) as a function of the impor-
tant environmental variables (env-imp). Dashed lines define the AUC standard deviation band.
The highlighted area under the AUC indicates the optimal range of preference for the differ-
ent Elmidae genera. Cnpy = Canopy, Elev = Elevation; East = Eastness, Fdir = Flow direction;
Ltlgy = Lithology, PP = Precipitation, Rip-alt = Riparian alteration, Shreve = Shreve stream order,
Slp = Slope, Snty = Sinuosity.
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Table 3. Environmental variables that were identified as important to explain the spatial variability
of each genus of the Elmidae family. The importance value (varimp) for each variable is expressed
in percentage (“*” indicates that the median central tendency measure was used to define the
aggregated variable value). Cnpy = Canopy; Elev = Elevation; East = Eastness; Fdir = Flow direction;
Ltlgy = Lithology; PP = Precipitation; Rip-alt = Riparian alteration; Shreve = Shreve stream order;
Slp = Slope; Snty = Sinuosity.

Genera Environmental Variable and Its Weight (%)

Austrelmis
Elev * PP * East * Slp * Rip-alt *
28.92 24.56 16.90 6.45 5.57

Austrolimnius
Elev Ltlgy * East * Fdir * Slp *
51.70 35.39 4.10 2.11 1.86

Heterelmis
Elev Ltlgy Slp * East Shreve * Rip-alt *
52.27 26.95 6.63 5.00 3.27 2.06

Macrelmis
PP Shreve Elev * East Slp * Cnpy *

53.56 19.56 7.17 6.23 5.76 2.83

Neoelmis
PP Slp Cnpy East * Snty

47.62 10.06 9.41 6.38 5.45

Upon the AUC curves shown in Figure 5, the following environmental requirements
for the Elmidae genera, reflected by the respective optimal probability of occurrence ranges,
are distinguished. Higher values of the probability of occurrence for Austrelmis (g1) are
in streams characterised by the environmental variable ranges: elevation [3111–3833] m
a.s.l., precipitation [1279–1883] mm, eastness [0.49–0.99], slope [29–33]%, and riparian
alteration [0–61]%. Higher probability values for Austrolimnius (g2) are in streams charac-
terised by the ranges: elevation [3043–3833] m a.s.l., eastness [−2.7–0.990], flow direction
[97.2–126.7], and slope [22.5–32.9]%. Higher probability values for Heterelmis (g3) are in
streams characterised by the ranges: elevation [2734–3798] m a.s.l., lithology [43.3–75.3],
slope [0.33–2.68]%, eastness [0.65–0.89], Shreve order [47.9–282.2], and riparian alteration
[28.0–63.0]%. Higher probability values for Macrelmis (g4) are in streams characterised
by the environmental ranges: precipitation [1093.4–2883.5] mm, Shreve order [1.0–422.9],
elevation [433.0–3249.2] m a.s.l., eastness [−0.46–0.97], slope [23.8–32.9]%, and canopy
[70.5–96.0]. Higher probability values for Neoelmis (g5), are in streams denoted by the
ranges: precipitation [1279.4–2069.8] mm, slope [17.8–32.9]%, canopy [70.6–96.0], eastness
[0.45–0.97], and sinuosity [1.1–1.4].

3.3. C3 Class of Occurrence Probability of Elmidae across the Paute River Basin

The spatial distribution of the C3 class of occurrence probability of Elmidae across
the study basin and the respective distribution of the anthropogenic impact are shown in
Figure 6. A lower anthropogenic level characterises 59.4% of the basin area, whilst the
remaining 40.6% exhibits a higher anthropogenic level. The figure depicts that the C3
class of occurrence probability of Elmidae is, in average terms, not distributed in higher
anthropogenic impacted zones, which is congruent with elmids being prone to be absent in
(water quality) impacted zones.
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4. Discussion
4.1. Model Selection

The use of the RF algorithm was successful in terms of the achieved modelling perfor-
mance. Notwithstanding, most studies that chose the SDMs framework of analysis utilised
the Maximum Entropy Algorithm [25,26] using the MaxEnt software [27] as their primary
modelling tool since it has a user-friendly graphical interface (i.e., it is easy to use and
enables a lucid visualisation of results) [99]. This trend of using MaxEnt has also been
observed in Ecuador for spatially assessing organisms belonging to different biological
communities [100–106]. However, some limitations of the MaxEnt modelling tool have
been reported [107]. As it is the most relevant that this approach considers only presence
(i.e., occurrence) data, this implies that the prevalence of the species (i.e., the proportion of
occupied sites) cannot be precisely determined [108,109]. A second fundamental limitation
of MaxEnt is that sample selection bias (whereby some areas in the landscape are sampled
more intensively than others) has a much stronger effect on presence-only models than on
presence–absence models. In this context, if the presence–absence survey data are available
as in the current research, it is generally prudent to use a presence–absence modelling
method [109], such as the RF algorithm, which has been tested as one of the most accurate
tools for the construction of SDMs [29–32,110–112].

4.2. Model Performance

Some differences were observed in the performance of the RF algorithm (charac-
terised by the AUC values) modelling the distribution of the five elmid genera (Table 2).
Species distribution modelling quality could be assessed considering subjective AUC con-
ditions/ranges. Alternatively, it could be adopted the AUC conditions/ranges suggested
by Hosmer et al. [90] or the AUC condition (i.e., >0.7) used by Cha et al. [32] to regard
the modelling quality as “excellent”. According to the first AUC criteria, the RF SDMs of
Austrelmis, Austrolimnius, and Macrelmis could perform an overall “excellent discrimina-
tion”; the respective RF models of Heterelmis and Neoelmis performed an overall “acceptable
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discrimination”. In consonance with the second AUC criterion, given that the AUC values
of all the RF SDMs of the study genera were higher or equal to 0.7, the overall performance
of all the SDMs could be regarded as “excellent”. The False Positive Rate (FPR) confirms
the AUC findings, in the sense that the RF-based SDMs for Austrelmis (19%), Austrolimnius
(16%) and Macrelmis (19%) performed better than the respective models for Heterelmis (27%)
and Neoelmis (34%).

Model performance is likely to be compromised using genera instead of species taxo-
nomic level since genera can contain several different congeners, which could have different
ecological requirements. However, all study genera prefer clean water conditions [34,35,86];
as such, it is assumed that congeners within each genus also have similar preferences.
Hence, it is assumed that, under the current conditions, the model performance is only
being compromised in a marginal level.

4.3. Basic Findings of the Developed SDMs

Elmidae family members are indicators of good stream ecosystem status [15,18,113,114].
The occurrence probabilities of elmids predicted in this study are notably lower in the
human-impacted central region of the study catchment (Figures 4 and 6). Further, some sub-
stantial differences in ecological requirements were predicted by the SDMs of elmid genera
in the current research (Figure 4). These differences are like previous studies [16,22,115,116],
which found that genera in the Elmidae family differ regarding their ecological require-
ments. In this context, despite some relevant works that have been published on the
taxonomy of the Ecuadorian Elmidae in the last few years [117–119], no work has been
done about species distribution modelling of Elmidae. Further, to the best of our knowledge,
just one SDM study using MaxEnt considered Elmidae in a southern Brazilian basin [60].
Contrasting the findings of this study (Figure 4), Braun et al. [60] found very similar spatial
distributions of the occurrence probability of their study genera. These differences in the
outcomes of both studies are likely to be the consequence of (i) the different characteristics
(elevation range, climate, geology, etc.) of the study basins and (ii) the different mod-
elling approaches that were used in either study (i.e., presence–absence or presence-only
modelling).

4.4. Important Predictors for Elmids Distribution

Despite the relatively similar identification of important variables for the models of
the five study genera, each genus model has its own set of informative variables (Table 3,
Figure 5). This finding emphasises the (predicted) dissimilarities of ecological requirements
of some of the study genera.

González-Córdoba et al. [22] found in the Colombian Andean region that Austrelmis
survive in a narrow temperature range of cold water. In contrast, Austrolimnius and
Heterelmis tolerate a wide temperature range and survive cold and relatively warm water.
Given the tight inverse relationship between elevation and temperature [120], both findings
of González-Córdoba et al. [22] fit with the current research, where the higher probability
of spatial occurrence of Austrelmis is between 3111 and 3833 m a.s.l. (Figures 4 and 5),
whilst Austrolimnius and Heterelmis tend to occur at higher and lower elevation streams
(ranges between 3043 and 3833 and 2734 and 3798 m a.s.l., respectively). This highlights
the importance of elevation for the spatial distribution of the Austrelmis, Austrolimnius and
Heterelmis. The elevation preference for Austrelmis is like what has been estimated for the
Cañete River basin in the south of Perú [121].

For Austrelmis, Austrolimnius, and Heterelmis, the lithology and the percentage of ri-
parian alteration were selected as informative (Figure 5). Consistent with this finding,
in the Ocoa river basin, Colombia, the conservancy of the riparian ecosystems has been
reported as a critical aspect for Austrolimnius and Heterelmis [122]. It is likely to be the
consequence of the fact that elmid members frequently use riparian forests for their terres-
trial pupation [123]. Further, Austrolimnius and Heterelmis apparently prefer rivers located
in formations such as silts, clays, pyroclasts, and undifferentiated metamorphic rocks;
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however, in the literature, there are no specific studies about the influence of this variable
on Elmidae members. Overall, it is known that the macroinvertebrate communities are
generally modified by local factors such as geology [124]; for example, the influence of
the local geology was responsible for the high concentrations of salts in the Lincha river
sub-basin (Perú), a factor that conditioned the presence or relative abundance of some taxa,
including elmids [121].

The precipitation was another essential variable for the ecological requirements of
Macrelmis and Neoelmis (Figure 5). In the case of Macrelmis, it is mainly predicted in the east
of the study basin, where higher precipitations, in the range from 1090 to 2885 mm, are
observed [125]. Because precipitation influences stream discharge, the latter is consistent
with previous findings, as this genus is positively correlated with higher discharges [126].

Some studies found that Macrelmis is related to higher water temperatures [127–129].
Similarly, the respective SDM predicted a high probability of occurrence of Macrelmis to-
wards the Amazon region where the temperature is higher. For Macrelmis, the canopy
variable was important in the species distribution modelling process (Figure 5). Previ-
ous findings for Macrelmis suggest that they are closely related to areas with forested
biomes [130], which is congruent with the findings of the current research as the high
probability values for Macrelmis were predicted to occur in its great majority in the east of
the basin (Figure 4), where high canopy values characterise sub-basins.

In the case of Neoelmis, the canopy variable was significant in its species distribution
modelling (Figure 5), as members of this taxon were rarely predicted in the middle stripe
of the study basin where forested areas are limited, and anthropogenic activities are im-
portant. González-Córdoba et al. [22] found that Neoelmis was present in a wide range of
temperatures and even tolerates medium to high degrees of contamination. It is likely these
differences are based on the hydrological systems and on the frameworks of research (i.e.,
the work of González-Córdoba et al. [22] is far from the concept of SDMs). Additionally,
the possibility that different congeners vary in habitat preferences could explain the dis-
similarity of the findings of Neoelmis between both studies. Just for Neoelmis, the sinuosity
(i.e., Snty) was selected as an informative variable to explain its spatial distribution in the
study basin, i.e., members of Neoelmis prefer streams with a high degree of meandering
(Figure 5). However, although the importance of Snty to elmids has been described [131],
for the specific case of Neoelmis no similar findings exist like the current research.

4.5. Elmidae Genera’s SDMs and Their Implications for the Surface Water Quality Management in
the Study Basin

The high probability values of Austrolimnius, Heterelmis, and mainly Austrelmis are
rarely predicted in most parts of the Burgay and Magdalena sub-basins (Figure 4), which
have been described as polluted systems where the domestic and industrial wastewater
discharge, extensive agriculture, cattle ranching, and the loss of native vegetation cover
are the anthropogenic threats that cause severe surface water quality pollution and the
subsequent loss of benthic macroinvertebrates taxa [21,34,35,132,133]. For the study basin,
Sotomayor et al. [21,86] found that Elmidae is a keystone family in establishing adequate
stream water quality assessments. Thus, despite the dissimilarity of genera in the Elmidae
family regarding their ecological requirements, the overall trend of elmid members is
that their occurrence probability in the study basin is higher in areas with good levels of
conservation, e.g., protected areas (Figure 6). This is emphasised through the cross-check
analysis of Figure 6, i.e., the high occurrence probability of Elmidae is less distributed in
the areas with high anthropogenic impact. Likewise, in the high zones of the study basin,
the anthropogenic activities are less than in their lower zones. That is, the biogeographical
importance of the elevation for the potential distribution of elmids members is notorious.
However, indirectly, anthropisation is a factor linked with the elevation, and both signals
were detected in the current research.
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5. Conclusions

Using the Random Forest algorithm, the genera of the Elmidae family were predicted
in a great majority with good statistical reliability in healthy streams of the Paute river basin
located in areas with good conservation status, i.e., protected areas. Some clear differences
in ecological and environmental requirements were registered for some of the modelled
elmid genera in the basin. The high probability values of spatial occurrence for Austrelmis
are linked chiefly to streams of high mountains, i.e., the páramo ecosystems. Additionally
predicted in the upper parts of the basin were Austrolimnius and Heterelmis, but at more
varied elevation ranges, and Heterelmis in some areas where human activity was moderate.
Contrary, Macrelmis were the majority predicted in the east of the studied basin in forest
areas with high canopy values towards the Amazon system (also with high precipitation
levels). According to predictions, Neoelmis would inhabit high altitudinal streams with
a high degree of meandering in the middle portion of the Paute river basin. There is
relative consistency in the informative variables that explain the spatial distribution of
elmid genera in the study basin. Thus, factors such as elevation, precipitation, the quantity
of water, and land use are linked to the general ecological requirements of the elmid
genera and thereby to their occurrence probability. However, for each modelled genus,
a specific set of environmental factors was observed, which implies dissimilarities in the
ecological and biogeographical factors that govern the spatial distribution of the studied
genera. However, despite these dissimilarities between elmid genera, the overall finding is
that Elmidae members are good indicators of healthy freshwater ecosystems. The study
revealed that the use of robust machine learning methods such as the one applied here, in
conjunction with appropriate spatial analysis and visualisation tools, could be a promising
approach to derive plausible geographical distributions of species (and genera) in support
of conservation and management purposes, and that could be applied in other locations
where suitable spatially distributed data are available.
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119. Čiampor, F.; Kodada, J.; Bozáňová, J.; Čiamporová-Zat’ovičová, Z. Disersus otongachi a new species of Larainae riffle beetles
from Ecuador (Coleoptera: Elmidae). Zootaxa 2021, 4963, 193–199. [CrossRef]

120. Kattel, D.B.; Yao, T.; Yang, W.; Gao, Y.; Tian, L. Comparison of temperature lapse rates from the northern to the southern slopes of
the Himalayas. Int. J. Climatol. 2015, 35, 4431–4443. [CrossRef]

121. Acosta, R. Estudio de la Cuenca Altoandina del Río Cañete (Perú): Distribución Altitudinal de la Comunidad de Macroinvertebra-
dos Bentónicos y Caracterización Hidroquímica de sus Cabeceras Cársticas. Doctoral Thesis, Universitat de Barcelona, Barcelona,
Spain, 2009.

122. Aguilera Giraldo, I.A.; Vásquez- Ramos, J.M. Distribución espacial y temporal de Elmidae (Insecta: Coleoptera) y su relación
con los parámetros fisicoquímicos en el río Ocoa, Meta, Colombia. Rev. La Acad. Colomb. Cienc. Exactas Físicas Nat. 2019, 43, 108.
[CrossRef]

123. Burk, R.A.; Kennedy, J.H. Invertebrate communities of groundwater-dependent refugia with varying hydrology and riparian
cover during a supraseasonal drought. J. Freshw. Ecol. 2013, 28, 251–270. [CrossRef]

124. Pacheco, G.S.M.; Pellegrini, T.G.; Lopes Ferreira, R. Cave lithology influencing EPT (Ephemeroptera, Plecoptera, Trichoptera)
assemblages and habitat structure in south-eastern Brazil. Mar. Freshw. Res. 2021, 72, 1546–1552. [CrossRef]

125. Mora, D.E.; Willems, P. Decadal oscillations in rainfall and air temperature in the Paute River Basin-Southern Andes of Ecuador.
Theor. Appl. Climatol. 2012, 108, 267–282. [CrossRef]

126. Ríos-Touma, B.; Encalada, A.C.; Prat Fornells, N. Macroinvertebrate assemblages of an Andean high-altitude tropical stream: The
importance of season and flow. Int. Rev. Hydrobiol. 2011, 96, 667–685. [CrossRef]

127. Spangler, P.J.; Santiago-Fragoso, S. The Aquatic Beetle Subfamily Larainae (Coleoptera: Elmidae) in Mexico, Central America, and the
West Indies; Smithsonian Contributions to Zoology; Smithsonian: Washington, DC, USA, 1992; pp. 1–74. [CrossRef]

128. Spangler, P.J. Two new species of the aquatic beetle genus Macrelmis Motschulsky from Venezuela (Coleoptera: Elmidae: Elminae).
Insecta Mundi 1997, 11, 1–8.

129. Fernandes, A.S. Taxonomia de Elmidae (Insecta, Coleoptera) do Município de Presidente Figueiredo, Amazonas, Brasil; Instituto Nacional
de Pesquisas da Amazônia: Manaus, Brazil, 2010; p. 140.

130. Braun, B.M.; Pires, M.M.; Stenert, C.; Maltchik, L.; Kotzian, C.B. Effects of riparian vegetation width and substrate type on riffle
beetle community structure. Entomol. Sci. 2018, 21, 66–75. [CrossRef]

131. Brown, A.G.; Rhodes, E.J.; Davis, S.; Zhang, Y.; Pears, B.; Whitehouse, N.J.; Bradley, C.; Bennett, J.; Schwenninger, J.L.; Firth, A.;
et al. Late Quaternary evolution of a lowland anastomosing river system: Geological-topographic inheritance, non-uniformity
and implications for biodiversity and management. Quat. Sci. Rev. 2021, 260, 106929. [CrossRef]

132. Da Ros, G. La Contaminación de Aguas en Ecuador: Una Aproximación Económica; Instituto de Investigaciones Económicas, Pontificia
Universidad Católica del Ecuador: Quito, Ecuador, 1995.

133. Pauta Calle, G.; Chang Gómez, J. Indices de calidad del agua de fuentes superficiales y aspectos toxicológicos, evaluación del Río
Burgay. Maskana 2014, 5, 165–176.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1111/j.1472-4642.2010.00725.x
http://doi.org/10.1111/j.1472-4642.2008.00491.x
http://doi.org/10.1007/978-1-4419-7390-0
http://doi.org/10.1371/journal.pone.0232736
http://www.ncbi.nlm.nih.gov/pubmed/32428047
http://doi.org/10.1127/archiv-hydrobiol/150/2001/641
http://doi.org/10.25085/rsea.790303
http://doi.org/10.25260/EA.20.30.1.0.995
http://doi.org/10.11646/zootaxa.3342.1.1
http://doi.org/10.3897/zookeys.838.33086
http://doi.org/10.11646/zootaxa.4963.1.12
http://doi.org/10.1002/joc.4297
http://doi.org/10.18257/raccefyn.833
http://doi.org/10.1080/02705060.2012.753121
http://doi.org/10.1071/MF20359
http://doi.org/10.1007/s00704-011-0527-4
http://doi.org/10.1002/iroh.201111342
http://doi.org/10.5479/si.00810282.528
http://doi.org/10.1111/ens.12283
http://doi.org/10.1016/j.quascirev.2021.106929

	Introduction 
	Materials and Methods 
	Study Area 
	Sampling of Riffle Beetles 
	Environmental Variables 
	Species Distribution Models (SDMs) Using Random Forest (RF) Algorithm 
	Prediction of Spatial Distribution 
	Congruency of the Predicted Spatial Distribution of the C3 Probability of Occurrence of Elmid Genera 

	Results 
	Species Distribution Models (SDMs) 
	Assessing Significant Environmental Variables 
	C3 Class of Occurrence Probability of Elmidae across the Paute River Basin 

	Discussion 
	Model Selection 
	Model Performance 
	Basic Findings of the Developed SDMs 
	Important Predictors for Elmids Distribution 
	Elmidae Genera’s SDMs and Their Implications for the Surface Water Quality Management in the Study Basin 

	Conclusions 
	References

