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Abstract

Buildings are one of the largest consumers of electrical energy, making it

important to develop different strategies to help to reduce electricity

consumption. Building energy consumption forecasting strategies are

widely used to support demand management decisions, but these strategies

require large data sets to achieve an accurate electric consumption forecast,

so they are not commonly used for buildings with a short history of record

keeping. Based on this, the objective of this study is to determine, through

continuous hourly electricity consumption forecasting strategies, the

amount of data needed to achieve an accurate forecast. The proposed

forecasting strategies were evaluated with Random Forest, eXtreme

Gradient Boost, Convolutional Neural Network, and Temporal Convolu-

tional Network algorithms using 4 years of electricity consumption data

from two buildings located on the campus of the University of Valladolid.

For performance evaluation, two scenarios were proposed for each of the

proposed forecasting strategies. The results showed that for forecasting

horizons of 1 week, it was possible to obtain a mean absolute percentage

error (MAPE) below 7% for Building 1 and a MAPE below 10% for Building
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2 with 6 months of data, while for a forecast horizon of 1 month, it was

possible to obtain a MAPE below 10% for Building 1 and below 11% for

Building 2 with 10 months of data. However, if the distribution of the data

captured in the buildings does not undergo sudden changes, the decision

tree algorithms obtain better results. However, if there are sudden changes,

deep learning algorithms are a better choice.

KEYWORD S

building energy consumption, forecasting, learning algorithms, multistep forecasting, short‐
term forecasting

1 | INTRODUCTION

The search for energy efficiency in buildings is a
mandatory advance to guarantee sustainable develop-
ment as buildings consume a large amount of electric
energy.1 Therefore, approaches identified with the
decrease in building electricity consumption and ex-
penses have lately been presented.2 Electricity consump-
tion forecasting is important when using strategies for
building energy management systems, such as model
predictive control and demand‐side management,3 are
attracting a great deal of attention in recent years.4

Accurate forecasting models are useful in determining
energy‐efficient building plans and demand‐side man-
agement programs.5 With the improvement of the
building automation system, a lot of operational infor-
mation can be saved, which helps to forecast models to
benefit from existing operational information.6 To take
full advantage of the amount of collected information,
the most recent trend in building energy modeling is to
move from conventional physical models to data‐driven
models.7 In building electricity consumption, data‐driven
models rely on devices that produce large amounts of
energy‐related information.8

In data‐driven forecasting models, the most impor-
tant modules are the model inputs and the prediction
algorithms.9 The model inputs summarize the types of
information found in the existing study and anticipate
the electricity consumption pattern, emphasizing that
these electricity consumption patterns are not only
affected by the historical data but also by correlated
variables.10 Algorithms can be classified into shallow
learning and deep learning.11 Deep learning algorithms
such as Long‐Short Term Memory (LSTM), Convolu-
tional Neural Network (CNN), Recurrent Neural Net-
work (RNN), and Temporal Convolutional Network
(TCN) regularly change the inputs multiple times, before
conveying the outputs; while shallow algorithms, such as

Gradient Boost Regressor (GBR), Support Vector
Machines (SVM), K‐nearest Neighbors, Random Forest
(RF) and Extreme Gradient Boosting (XGBoost) mostly
change the inputs only a couple of times. The main
difference is the number of linear or nonlinear transfor-
mations of the input data.9

Building energy consumption forecasting models can
be classified into a single forecast, ensemble forecast, and
improved forecast.12 The single forecast model uses only
one algorithm to predict outcomes. The ensemble
forecast model is characterized as an algorithm that
consolidates the benefits of multiple single forecasting
models to enhance overall performance.13 An improved
forecast model consists of increasing the quality of the
data before being used by the forecasting model.14

Table 1 shows the contributions and limitations of recent
studies that have focused on the different types of
approaches.

As can be seen in the literature review, there are
recent studies that focus on electricity consumption
forecasting in buildings using the data‐driven method.
However, a limitation observed in these investigations is
that a large data set is required to obtain accurate
forecasts, which implies that buildings with limited time‐
series data could not use this method. Due to this, the
objective of this study is to analyze using continuous
hourly electricity consumption forecasting strategies
what would be the minimum data needed to obtain
accurate results. The main contributions of this
study are:

• A data‐driven approach that can be used to forecast
continuous hourly electricity consumption to support
demand management decisions in buildings with
limited time‐series data.

• Comparison analysis between a method that forecasts
the next 24 h for all hours of the day and a method that
forecasts the next 24 h for a particular hour.

MARIANO‐HERNÁNDEZ ET AL. | 4695
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• A comparative study between shallow and deep
learning algorithms using a multistep ahead prediction
strategy with limited time‐series data.

The rest of this paper is organized as follows:
Section 2 presents the data set, strategies, and algorithms
used. Section 3 shows the results obtained with the
different strategies and algorithms. The conclusions of
this study are described in Section 4.

2 | METHODOLOGY

In summary, the methodology used for this study was:

• Data sets preparation. The electricity consumption
data from two nonresidential buildings were used for
this study. A data set with a calendar, past series
values, weather, and historical data was created for
each building.

TABLE 1 Recent studies focus on single forecast, ensemble forecast, and improved forecast

Approach Ref. Contributions Limitations

Single Forecast [15] Proposed an adaptive Long Short Term Memory (LSTM)
driven by a Genetic Algorithm for building energy
consumption forecasting.

The building occupancy variable used for the
method was considered only based on
working days.

[16] Proposed a Gradient Boost Regressor with a modified
Particle Swarm Optimizer for energy consumption
forecasting.

The proposed approach was not compared with
other optimization methods.

[17] Presented an Artificial Neural Network along with a
Genetic Algorithm for energy consumption forecasting
in smart buildings.

The data set used was not large enough for training
and validation, so the model did not obtain
high accuracy.

[18] Presented a Convolutional Neural Network with two‐
dimensional input for short‐term load forecasting.

For 24‐hour ahead prediction Regression Trees
produced better results.

Ensemble
Forecast

[19] Presented three ensemble learning methodologies for short‐
term energy consumption forecast in an office building.

The forecast model only used climatic variables
and historical consumption as input variables.

[20] Proposed an ensemble model boosted by Particle Swarm
Optimizer for energy consumption forecasting.

The problem of reduced diversity in the model
prediction was not analyzed.

[21] Presented a deep learning framework for energy
consumption forecasting based on Convolutional Neural
Network and LTSM algorithms.

The performance of optimization algorithms for
hyperparameter tuning was not tested.

[22] Proposed an ensemble model for short‐term building energy
consumption forecasting using five data‐driven models.

The assembled model does not have algorithm
diversity because it was built only with neural
networks.

[23] Proposed a hybrid ensemble model to estimate short‐term
energy consumption by using sequential dependencies.

Neither climatic variables nor optimization
methods were considered in the model.

[24] Proposed a hybrid forecasting method based on Orthogonal
Maximum Correlation Coefficient feature selection and
Convolutional Gated Recurrent Unit.

Interactivity between variables was not considered
in choosing the best feature set.

Improved
Forecast

[25] Change a time‐dependent database into a structure that
machine learning algorithms can process and then apply
various types of feature selection techniques.

The approach was not tested with deep learning
algorithms to see if they improved
performance.

[26] Proposed a methodology that coordinates a pre‐handling
step utilizing domain knowledge with an insight‐based
feature selection process.

The comparison analysis shows that domain
knowledge is not the determining factor.

[27] Build a model suitable for short‐term forecasting by
utilizing small data sets, the performance of the model
was increased by utilizing projected sample generation.

The method was implemented and analyzed only
in neural networks.

[28] Proposed a fine‐grained attention mechanism to enhance
the performance of deep learning models for multistep
forecasting.

The study did not consider analyzing the proposed
approach with shallow learning algorithms.
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• Proposed approaches. A data‐driven forecasting strategy
was used to predict continuous hourly energy demand,
which was compared using two different methods.

• Learning algorithms. Four algorithms were selected to
analyze the proposed forecasting approaches. The
selected algorithms were RF, XGBoost, CNN, and TCN.

• Performance evaluation. Different scenarios were
carried out to validate the performance of the different
algorithms using mean absolute percentage error
(MAPE) as the evaluation metric.

2.1 | Data sets preparation

The data sets used for training the forecasting models
were composed of weather data, past series values,
calendars, and historical data. The weather data used in
the data sets were selected using correlation analysis
between climatological parameters such as precipitation,
relative humidity at 2 m, average temperature at 2 m,
minimum temperature at 2 m, maximum temperature at
2 m, heating degree days below 18.3°C, cooling degree
days above 0°C, cooling degree days above 10°C, and all‐
sky surface longwave downward irradiance. The selec-
tion of these variables was based on the importance they
represent in sustainable buildings, such as all‐sky surface
longwave downward irradiance, which is used for
building simulation and passive cooling design, since it
helps to consider both sunny and cloudy conditions.29

Based on Pearson's correlation coefficient, the variables
of all‐sky surface longwave downward irradiance, the
maximum temperature at 2 m, and the average tempera-
ture at 2 m were selected due to their strong correlation
with the electrical energy consumption.

Past series values correspond to the values of the hours
before the hour to be predicted, which would be useful to
forecast the values of the following hours. To determine
these values, an autocorrelation function and partial
autocorrelation function analysis were carried out, obtaining
the result that the previous 25 h would be useful for the
forecast. The calendar data were created from the variables
year, months, days of the week, and holidays. Historical data
correspond to the active energy consumed (kWh) of two
complete buildings with a continental Mediterranean
climate located at the University of Valladolid, Spain.
Building 1 corresponds to the Faculty of Science, which is
dedicated to administrative offices while Building 2 corre-
sponds to the Faculty of Economics, which is dedicated to
learning activities (see Table 2). The electrical consumption
data were collected from smart meters installed in each
building from 2016 to 2019 at intervals of 15min.

Since the raw data had missing values, it was
necessary to preprocess them. A linear interpolation
approach was used because the missing information was
less than 0.3% of the total information. The reason these
buildings were selected is due to their different electricity
consumption behavior during the years mentioned above
(see Figure 1). Building 1 presents similar electrical
consumption during the years evaluated while Building 2
presents variable behavior due to the replacement of low‐
efficiency equipment for high‐efficiency equipment and
the incorporation of renewable energy in the building,
reducing annual electricity consumption.

2.2 | Proposed approaches

Based on multistep ahead predictions, which learn a
simple parametric function from input time series and
estimate a series of values.30 Two methods were proposed
for this investigation, which is visually represented in
Figure 2. Method 1 forecasts the next 24 h for each hour
of the day, allowing the method to be used to forecast at
any hour of the day. Method 2 forecasts the next 24 h for
a single hour of the day. For method 1 to be able to
forecast energy consumption in this way, it was
necessary to use the data for the hour to be forecast
and the data for the next previous 24 h.

Method 1 was analyzed in previous research,31 in
which data from 2016 to 2018 were used for the training
phase and data from 2019 for the testing phase. For the
multistep ahead prediction strategy used in the afore-
mentioned research, the method has to learn 26,304

TABLE 2 General description and characteristics of each of
the buildings

Information Building 1 Building 2

Name Faculty of Science Faculty of
Economics

Coordinates 41.663411°,
−4.705539°

41.658586°,
−4.710667°

Climate Mediterranean Mediterranean

Area 16,006.66m2 15,456.51m2

Floors 5 3

Built Date 2005 1986

Current Use Offices and
laboratories

Offices and
classroom

Estimated
occupancy

1070 1340

MARIANO‐HERNÁNDEZ ET AL. | 4697
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FIGURE 1 (A) Hourly average electricity consumption for Building 1 by year. (B) Hourly average electricity consumption for Building 2 by year.

FIGURE 2 Schematic diagram of the
two methods used for the comparison study

patterns, which correspond to the total hours comprised
in the 3 years used in the training phase.

Due to the large number of patterns in the training
phase used by method 1, method 2 was proposed. In the

case of method 2, only 1095 patterns are used, corre-
sponding to the number of times an hour is repeated in
3 years. However, since method 2 only forecasted the next
24 h for a specific hour, 24 models were trained

4698 | MARIANO‐HERNÁNDEZ ET AL.
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simultaneously to learn the performance for each of the
hours of the day. To run all 24 models simultaneously,
this method was programmed in Python using the Joblib
library.

2.3 | Learning algorithms

To analyze the proposed approaches, two shallow
learning algorithms and two deep learning algorithms
were used to forecast electricity consumption. For
shallow learning algorithms, RF and XGBoost were used,
and for deep learning algorithms, CNN and TCN were
used. These algorithms were selected based on their good
performance obtained in the aforementioned research.31

A brief description of each of the algorithms is presented
below:

• RF is a mixture of numerous decision trees created
using a bootstrapping approach coming from the
learning data set samples of the predictor and
picking randomly at every node. RFs are completed
regarding classification and regression trees model
methodology.32

• XGBoost is an ensemble approach created based on
Gradient Boosting, it learns a set of regression trees in
parallel and acquires the outcome by summing the
score of each one. Some of its improvements are the
regularized objective to the loss function and instead of
applying a stochastic gradient descent strategy to
complement the corresponding optimization method,
XGBoost adds the best tree model.33

• CNN includes a convolutional layer, a pooling layer,
and a fully connected layer to imitate complex
information. As a general rule, CNN has a few
progressive systems of convolutional and pooling
layers, wherein a few convolution runs are performed
to extract the significant features from the input data.
In the convolutional layer, neurons from various layers
of the network are locally associated through a weight‐
sharing procedure.21

• TCN is architecture‐dependent on two main ideas: the
network convolutions are easy to perform as no past
data goes into the future and the architecture likewise
allows variable input sizes, mapping any output array.
An important feature is that allows parallelism, due to
its adaptability of input size and productive memory
use.34

The four selected algorithms were programmed in
Python using the XGBoost, Scikit‐Learn, and Tensor-
Flow libraries. The architectures and hyperpara-

meters used for the comparison study are shown in
Table 3. To obtain these values, randomized search
and grid search techniques were used, obtaining the
values presented as the best combinations of
parameters.

2.4 | Performance evaluation

Several accuracy metrics are available to assess the
performance of the algorithm based on the contrast
between the actual and predicted value. In this study,
MAPE has been used to evaluate the performance of the
methods due to its easy interpretation. MAPE is a metric
that indicates the accuracy of the expectation by
contrasting the remaining and observed values. It is
usually expressed in percentages and is feasible to
evaluate the performance of the forecasting model by
presenting the idea of absolute values. The MAPE is
characterized by the following equation35:

TABLE 3 Learning algorithms architecture and
hyperparameters

Algorithm Architectures and hyperparameters

RF • max_depth = 45
• n_estimators = 200
• min_samples_leaf = 1

XGBoost • n_estimators = 50
• eta = 0.1
• max_depth = 5
• colsample_bytree = 0.8
• subsample = 0.8
• gamma= 1

CNN • One convolutional hidden layer.
• First layer: 1D convolution with 64 filters,
kernel size = 2, linear activation function,
MaxPooling1D of size 2.

• Flatten.
• Output layer with 24 units.
• loss function =mean squared error
• optimizer = adam
• learning rate = 0.001
• batch size = 1
• The model with the best epoch in the loss
function was selected.

TCN • filters = 200
• kernel_size = 4
• dilations = [1, 2, 4, 8, 16, 32]
• batch size = 1
• activation function = linear

Abbreviations: CNN, Convolutional Neural Network; RF, Random Forest;
TCN, Temporal Convolutional Network.
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MAPE
n

x y

y
=

1
×

−
× 100%,

t

n
t t

t=1
(1)

Where, xt is the actual value, yt is the predicted value,
and n is the total number of estimations.

To evaluate the two methods with the four selected
learning algorithms, two different scenarios were
considered. In the first scenario, the methods are
trained with data from 1 month to 1 year, and the
hours of the following week after training are forecast.
In the second scenario, the methods are trained with
data from 1 month to 1 year, and the hours of the next
month after training are forecast. These scenarios were
approached from the point of view of buildings with a
short history of record keeping but requiring an
electricity consumption forecast as soon as possible for
decision‐making.

Since method 2 focuses on a particular hour, several
trials were carried out with different hours to find out
which hour of the day had the best and which had the
worst result, so only these hours were compared between
the methods.

3 | RESULTS AND DISCUSSION

3.1 | Preliminary analysis

As method 2 forecasts from a particular hour, a previous
analysis was carried out to know which hours of the day
perform best with the selected algorithms. After analyz-
ing the results of method 2 with all 24 models
simultaneously, it was observed that the lowest percent-
age values were found between hours 10 and 12, while

FIGURE 3 Methods performance of each of the algorithms for the 2019 hourly energy consumption forecast. CNN, Convolutional
Neural Network; MAPE, mean absolute percentage error; TCN, Temporal Convolutional Network.
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the highest percentage values were found between hours
20 and 23. Due to these results, hours 10 and 22 were
selected to compare the methods.

When working with all the data (3 years), method 1
presents a lower error percentage for the deep learning
algorithms in both buildings. However, for the shallow
learning algorithms, the results of both methods tend to be
more similar, and even when it comes to Building 1,

method 2 presents a lower error percentage. This finding
tells us that deep learning algorithms assimilate better the
variability that may exist in the data, which is why they
perform better with method 1. In addition, they learn better
the more data they have, which is the case with method 1.

The outcomes for method 1 in Building 1 and Building 2
(M1_B1 and M1_B2) and method 2 in Building 1 and
Building 2 (M2_B1 and M2_B2) can be seen in Figure 3.

TABLE 4 Average MAPE for each of the buildings using both strategies

Building 1 MAPE (%) Building 2 MAPE (%)

Algorithm Method 1 Method 2 Method 1 Method 2

RF 9.22 9.05 19.68 20.15

XGBoost 8.83 8.81 17.92 18.06

CCN 9.02 10.77 17.74 21.64

TCN 9.38 10.38 16.96 17.59

Abbreviations: CNN, Convolutional Neural Network; MAPE, mean absolute percentage error; RF, Random Forest; TCN, Temporal Convolutional Network.

(A) (B)

(C) (D)

FIGURE 4 (A) MAPE results of Scenario 1 in Building 1 for RF. (B) MAPE results of Scenario 1 in Building 1 for XGBoost. (C) MAPE
results of Scenario 1 in Building 1 for CNN. (D) MAPE results of Scenario 1 in Building 1 for TCN. CNN, Convolutional Neural Network;
MAPE, mean absolute percentage error; RF, Random Forest; TCN, Temporal Convolutional Network.

MARIANO‐HERNÁNDEZ ET AL. | 4701

 20500505, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ese3.1298 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [10/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3.2 | Scenario 1 evaluation

Based on the comparison between methods, we
observed that for Building 1 the shallow learning
algorithm obtained a better average MAPE than the
deep learning algorithms. In the case of Building 2,
the deep learning algorithms obtained a better average
MAPE than the shallow learning algorithm. This
indicates that when the energy behavior of the building
is stable over the years, as is the case of Building 1,
shallow learning algorithms present a lower error
percentage, while if the energy behavior varies over
the years due to improvements in energy efficiency such
as the replacement of less efficient equipment with
high‐efficiency equipment and the integration of solar
panels in the building as is the case of Building 2, deep
learning algorithms present lower error percentage.
Table 4 shows the average MAPE of method 1 and
method 2 for each of the buildings.

According to the results of scenario 1 for Building 1,
the shallow learning algorithms MAPE range was
between 4% and 39%. For RF, the best average results

were 7.08% in 151 days and 8.88% in 334 days, while
XGBoost obtained 11.66% in 273 days and 12.47% in 304
days. In the case of deep learning algorithms, the MAPE
range was between 6% and 63%. For CNN, the best
average results were obtained with 6.85% in 151 days and
6.47% in 334 days while TCN was 7.75% in 151 days and
7.27% in 273 days. Although the deep learning algorithms
obtained a wider range than the shallow learning
algorithms in terms of average, they obtained a lower
error percentage (see Figure 4).

In Building 2, the shallow learning algorithms MAPE
range was between 9% and 81%. For RF, the best average
results were obtained for training with 20.15% in 151
days and 22.63% in 304 days, while the XGBoost with
18.93% in 151% and 22.58% in 304 days. In the case of
deep learning algorithms, the MAPE range was between
9% and 55%. For CNN, the best average results were
obtained with 14.92% in 151 days and 13.62% in 273 days,
while TCN with 20.11% in 151 days and 15.94% in 365
days. For this case, deep learning algorithms obtained a
better range and better average results than shallow
learning algorithms (see Figure 5).

(A) (B)

(C) (D)

FIGURE 5 (A) MAPE results of Scenario 1 in Building 2 for RF. (B) MAPE results of Scenario 1 in Building 2 for XGBoost. (C) MAPE
results of Scenario 1 in Building 2 for CNN. (D) MAPE results of Scenario 1 in Building 2 for TCN. CNN, Convolutional Neural Network;
MAPE, mean absolute percentage error; RF, Random Forest; TCN, Temporal Convolutional Network.
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Based on the average results for each method, for the
first scenario where we forecast one week after training,
the shallow algorithms tend to perform better with
method 2. For deep learning algorithms in general it is
better to use method 1, the only exception was when we
trained the TCN for Building 2. Overall, CNN obtained
the best performance with 5.04% for Building 1% and
11.2% for Building 2.

3.3 | Scenario 2 evaluation

According to the results of scenario 2 for Building 1, the
shallow learning algorithms MAPE range was between 6%
and 42%. For RF, the best average results were obtained
with 11.7% in 273 days and 11.13% in 304 days while
XGBoost with 11.66% in 273 days and 12.47% in 304 days.
In the case of deep learning algorithms, the MAPE range
was between 7% and 80%. For CNN the best average
results were obtained with 11.43% in 304% and 16.18% in
334 days while TCN with 8.5% in 120 days and 9.94% in
304 days. For this case, the shallow learning algorithms

obtained a better range than deep learning algorithms,
however, TCN obtained better average results than the
shallow learning algorithms (see Figure 6).

For Building 2, the shallow learning algorithm MAPE
ranged from10% to 91%. For RF, the best average results
were 24.69% in 243 days and 22.83% in 304 days, while
XGBoost was 19.71% in 243 days and 23.43% in 304 days.
In the case of deep learning algorithms, the MAPE range
was between 11% and 81%. For CNN, the best average
results were 14.7% in 243 days and 15.23% in 304 days,
while TCN was 21.84% in 151 days and 18.39% in 304
days. For this case, the deep learning algorithms obtained
a better range and better average results than shallow
learning algorithms (see Figure 7).

Based on the average results for each method, for the
second scenario where we forecast one month after
training, the shallow algorithms tend to perform better
with method 2. For deep learning algorithms in general it
is better to use method 2, the only exception was when
we trained the CCN on Building 2. For Building 1, RF
performed the best with 7.2%. For Building 2, XGBoost
obtained the best results with 11.2%.

(A) (B)

(C) (D)

FIGURE 6 (A) MAPE results of Scenario 2 in Building 1 for RF. (B) MAPE results of Scenario 2 in Building 1 for XGBoost. (C) MAPE
results of Scenario 2 in Building 1 for CNN. (D) MAPE results of Scenario 2 in Building 1 for TCN. CNN, Convolutional Neural Network;
MAPE, mean absolute percentage error; RF, Random Forest; TCN, Temporal Convolutional Network.
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In general, according to the results, decision tree
algorithms trained with small data sets perform better
with the method that focuses on forecasting from a
particular hour, because the data used in the training
stage are more specific. For deep learning algorithms
trained with small data sets perform better with the
method that focuses on forecasting from any hour of the
day, because the data used in the training stage have a
greater variety of data. It should be noted that the deep
learning algorithms, regardless of the method used,
adapted better to sudden changes in electricity
consumption.

Similarly, the results indicate that in buildings that
are starting to record electricity consumption and the
distribution of data remains without sudden changes,
decision tree algorithms can be used to forecast
electricity consumption to implement demand‐side
management strategies. However, if the data distribution
could present abrupt changes due to energy improve-
ments, the deep learning algorithm would be a better
choice since they adapt better to sudden changes.

It should be noted that sudden changes can be caused
by seasonal effects, as is the case in these buildings
during the holiday months, which produce high levels of
inaccuracy in the models. However, the abrupt changes
between weekdays and weekends, because they occur
constantly in a very short time, only initially affect the
models, but later the models learn these patterns.

Figure 8 shows the mean and standard deviation of
the MAPE for each model trained with each of the 12
short data set versions. According to the results for
scenario 1, the performance is better with CNN using
method 1, however, with method 2, Random Forest
would provide the best results for Building 1, while the
TCN would provide the best results for Building 2. In
scenario 2, TCN performs better for building 1 with both
methods, while CNN performs better with method 1 in
Building 2.

The standard deviations suggest that the performance
of the 12 models has more dispersion with method 2.
Therefore, with this method, it is more relevant to pay
attention to the amount of data available for training.

(A) (B)

(C) (D)

FIGURE 7 (A) MAPE results of Scenario 2 in Building 2 for RF. (B) MAPE results of Scenario 2 in Building 2 for XGBoost. (C) MAPE
results of Scenario 2 in Building 2 for CNN. (D) MAPE results of Scenario 2 in Building 2 for TCN. CNN, Convolutional Neural Network;
MAPE, mean absolute percentage error; RF, Random Forest; TCN, Temporal Convolutional Network.
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This finding is even more visible with RF and XGB
models because the dispersion with method 2 tends to
have larger increases.

4 | CONCLUSION

This paper presents a comparison between two multistep
ahead prediction strategies with different algorithms to
determine which approach is better to use in buildings
with limited time‐series data to forecast electric con-
sumption. For the analysis of the methods, the data from
two buildings located at the University of Valladolid,
Spain were used. In addition to historical data from the
two buildings, the data set was composed of weather,
calendar, and past values data. To analyze the methods,
RF, XGBoost CNN, and TCN algorithms were used.

According to the results, for buildings where data
distribution does not undergo sudden changes during
data capture, the decision tree algorithm would be the
best choice. However, if the data distribution undergoes
sudden changes, such as improvements due to energy

efficiency measures, deep algorithms would be a better
choice since they adapt better to sudden changes
compared to decision tree algorithms.

For the case where the forecasting horizon was
1 week, it was possible to obtain a MAPE below 7% for
Building 1 and a MAPE below 10% for Building 2 with
6 months of data, using the forecasting method that
considered only a particular hour. However, in the case
where the forecasting horizon was 1 month, it was
possible to obtain a MAPE below 10% for Building 1 and
below 11% for Building 2 with 10 months of data using
the method that considered all hours of the day. This
indicates that to forecast a longer forecasting horizon,
these algorithms would need more learning patterns and
the seasonality of the data must be considered.

For future lines of research, the determination of the
limitations to adapt to sudden changes that deep learning
algorithms have in buildings that are starting to record
data considering that they are the best option, as well as
the analysis of the inclusion of energy efficiency improve-
ments implemented in the building as input variables to
help the models to improve their performance.

(A)

(B)

(C)

(D)

FIGURE 8 (A) Mean of MAPE for Building 1. (B) Standard Deviation of MAPE for Building 1. (C) Mean of MAPE for Building 2. (D)
Standard Deviation of MAPE for Building 2. CNN, Convolutional Neural Network; MAPE, mean absolute percentage error; TCN, Temporal
Convolutional Network.
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