
Vol.:(0123456789)1 3

Theoretical and Applied Climatology 
https://doi.org/10.1007/s00704-023-04623-w

RESEARCH

Evaluating Markov chains and Bayesian networks as probabilistic 
meteorological drought forecasting tools in the seasonally dry tropics 
of Costa Rica

Kenneth Gutiérrez‑García1,2 · Alex Avilés3 · Alexandra Nauditt4 · Rafael Arce1 · Christian Birkel1

Received: 24 August 2022 / Accepted: 21 August 2023 
© The Author(s) 2023

Abstract
Meteorological drought is a climatic phenomenon that affects all global climates with social, political, and economic impacts. 
Consequently, it is essential to develop drought forecasting tools to minimize the impacts on communities. Here, probabilistic 
models based on Markov chains (first and second order) and Bayesian networks (first and second order) were explored to 
generate forecasts of meteorological drought events. A Ranked Probability Score (RPS) metric selected the best-performing 
model. Long-term precipitation data from Liberia Airport in Guanacaste, Costa Rica, from 1937 to 2020 were used to esti-
mate the 1-month Standardized Precipitation Index (SPI-1) characterizing four meteorological drought states (no drought, 
moderate drought, severe drought, and extreme drought). The validation results showed that both models could reflect the 
climatic seasonality of the dry and rainy seasons without mistaking 4–5 months of the rain-free dry season for a drought. 
Bayesian networks outperformed Markov chains in terms of the RPS at both reproducing probabilities of drought states 
in the rainy season and when compared to the months in which a drought state was observed. Considering the forecasting 
capability of the latter method, we conclude that these models can help predict meteorological drought with a 1-month lead 
time in an operational early warning system.

1 Introduction

Drought is a climatic feature that affects all climate zones 
of the planet, and its impact is reflected in social, politi-
cal, and economic costs (UNDRR 2021; IPCC 2021). For 
instance, in 2011, the drought in the Horn of Africa affected 
almost 13 million people, and in 2012, the USA experienced 
its worst drought since the 1950s, affecting 80% of crop-
lands (Ki-moon 2014). Other prominent global examples 
include the decadal droughts in Chile and Australia since 

2010 (Saft et al. 2015; Garreaud et al. 2020). Furthermore, 
climate change projections for tropical regions indicate that 
droughts are likely to become more frequent and severe, 
mainly due to rising temperatures (Van Lanen et al. 2015; 
UNDRR 2021; IPCC 2021). The Central American Dry 
Corridor (CADC) is the most vulnerable region in Central 
America to climate variability and change, as identified by 
the FAO 2016. A minimum of 4 months without rainfall 
(dry season) and a population vulnerable to socio-economic 
change commonly characterize the CADC (Gotlieb et al. 
2019; Quesada-Hernández et al. 2019). In 2015, parts of 
Central America and the CADC experienced one of the 
most severe droughts in the previous 10 years, as more than 
3.5 million people needed assistance; the most significant 
impacts were reflected in food insecurity, as crops suffered a 
poor harvest, resulting in large economic losses (FAO 2016).

Despite the socio-economic impacts caused by 
droughts, Mishra and Desai (2006) alerted of a defi-
ciency in drought mitigation efforts and the limita-
tions in forecasting dry conditions. The importance of 
drought forecasting, mainly meteorological drought, 
can be inferred from a decrease in precipitation as 
the beginning of several cascading effects such as the 
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decrease in soil moisture, streamflows, and groundwater 
levels, with the consequent impact on agricultural pro-
duction and societal welfare. Van Loon (2015) defines 
drought as a sustained period of low water availabil-
ity compared to average conditions, with spatial and 
temporal characteristics that vary from one region to 
another. Wilhite and Glantz (1985) classified drought 
into meteorological, agricultural, hydrological, and 
socio-economic drought according to the chronologi-
cal order of reduced precipitation and its impacts, where 
meteorological drought is usually defined as the degree 
of dryness compared to the average amount and duration 
of a dry period. The degree of dryness is often charac-
terized in terms of duration, severity, and frequency 
using precipitation indices (WMO; Global Water Part-
nership 2016; Romero et al. 2020). Among different 
indices, the most widely applied is the Standardized 
Precipitation Index – SPI (McKee et al. 1993; WMO 
2012). Albeit the SPI does not consider actual rainfall 
volume due to the normalization process with a fitted 
statistical distribution, it is a comparable unit-less index 
(WMO; Global Water Partnership 2016). Nonetheless, 
the SPI possesses limitations, as, for example, it cannot 
determine the impact of rising temperatures on future 
drought patterns (Vicente-Serrano et al. 2010).

Northern Costa Rica forms part of the CADC and is no 
exception to other drought-affected regions; however, few stud-
ies exist to understand the behavior of droughts (Birkel 2006). 
A major challenge characterizing droughts in the seasonally 
dry tropics is the 4 to 5 months dry season with virtually no 
rainfall. The latter dry season is part of the climate variability 
of the region and has to be clearly differentiated from droughts 
that mostly manifest as a rainfall deficit over the rainy season 
(Quesada-Hernández et al. 2019; Romero et al. 2020). Linked 
to the latter is the challenge that poses the methodology used 
to determine the beginning and end of drought events (Mishra 
and Singh 2011). Therefore, many different modeling tech-
niques were used for different purposes, such as regression 
analysis assuming a linear relationship between predictor and 
predictand. However, the linearity assumption precludes from 
adequate long-term forecasting (Avilés et al. 2016).

Time series models such as Autoregressive Integrated 
Moving Average (ARIMA) (Modarres 2007; Han et al. 
2010) and Seasonal Autoregressive Integrated Moving 
Average (SARIMA) (Fernández et al. 2008) models were 
proposed for drought forecasting. However, identifica-
tion, estimation, and diagnostics of the most appropriate 
time series model depends on the user and the purpose 
of the model (Mishra and Singh 2011). Neural networks 
(Mokhtarzad et al. 2017; Khan et al. 2020) are nonlinear 
models that can characterize complex data patterns at the 
expense of increased computational burden (Mishra et al. 
2011; Avilés et al. 2016).

Probabilistic models can explicitly account for the uncer-
tainty of drought-related variables with Markov chains (MC) 
being the most commonly used (Paulo and Pereira 2007; 
Avilés et al. 2016; Estácio et al. 2021). Past studies used 
MC to forecast short-term rainfall deficits in Paulo et al. 
(2005) and (Yeh and Hsu 2019). More sophisticated Bayes-
ian networks were not as widely used for drought forecasting 
(Madadgar and Moradkhani 2013) and therefore need testing 
in tropical regions (Avilés et al. 2016) and particularly in 
Central America, where Maldonado et al. (2018) mentions 
that there is no standardized methodology to produce fore-
casts, which suggest that some of these forecasts are based 
on subjective evaluations.

Therefore, we tested and compared two probabilistic 
models to detect and forecast meteorological drought in 
the seasonally dry tropics of northern Costa Rica. The first 
model was based on Markov chains, and the second model 
used Bayesian networks based on copula functions. These 
models were set up and run with a continuous and high-
quality monthly precipitation time series from 1937 to 2020, 
utilizing a single weather station.

The specific objectives were to

i) test Markov chains of first and second order with a long 
precipitation time series.

ii) evaluate the performance of Bayesian network models 
of two- and three-dimensional copulas.

iii) compare these probabilistic models to establish the 
region’s most suitable drought forecast method.

2  Study area

The Tempisque catchment (Fig. 1) belongs to the province of 
Guanacaste and is located in the North Pacific of Costa Rica. 
According to the National Meteorological Institute (2008), 
this region is the most water limited in the country. Water 
scarcity develops due to the low rainfall rates and result-
ant streamflow during the dry season from December until 
April. The average annual rainfall in the region is 1700 mm, 
with mean temperatures of 32 °C during the day and 22 °C at 
night. The rainy season extends from May to November with 
lower rainfalls around July which is known as Veranillo de 
San Juan (Ramírez 1983) or canícula (Fig. 1). Mean monthly 
rainfall from Liberia International Airport weather station 
over the dry season months is 17 mm with a monthly wet 
season average of 226 mm. The driest year was 1997 with 
an annual monthly average precipitation of 57 mm. The wet-
test year was 1955, with an average of 238 mm. From 1973 
to 2003, the mean daily streamflow of the Tempisque River 
at Guardia gauging station was 24.6  m3/s with the lowest 
flow of 2.6  m3/s measured in late April (Birkel et al. 2017). 
This marked intra-annual seasonality is associated with the 



Evaluating Markov chains and Bayesian networks as probabilistic meteorological drought…

1 3

seasonal movement of the Intertropical Convergence Zone 
(ITCZ) and other oceanic-atmospheric regulators such as the 
El Niño Southern Oscillation (Durán-Quesada et al. 2010).

Despite the marked seasonality and drought proneness 
of the region, the area used for agriculture increased from 
0% in 1950 to 27.8% in 2010, changing from a subsistence 
model to an export-oriented industrial model (Birkel et al. 
2017). The region is one of the primary producers of rice 
and melon and processes more than 50% of the sugar cane 
of the country (PIAAG 2019). These activities are carried 
out intensively and use extracted water from the Tempisque 
River as the main source to support the irrigation needs.

3  Materials and methods

3.1  Data sources

For the analysis and modeling of drought, precipitation 
records from the Liberia International Airport weather 
station with an 84-year time series (1937–2020) were 
used (location in Fig. 1). The data were obtained from 
the National Meteorological Institute with less than 5% 
information gaps. Missing data was linearly infilled from 
a double mass curve using the Climate Hazards Group 
Infrared Precipitation with Stations (CHIRPSv2) (Funk 
et al. 2014). The CHIRPS product correlated well (R2 > 
0.8) with observed precipitation in the region (Arciniega 
et al. 2022) and could adequately simulate the duration of 

streamflow droughts (Venegas-Cordero et al. 2021) in the 
Tempisque catchment.

3.2  Drought classification

The infilled precipitation series were checked for outliers, 
and a Mann-Kendall statistical test was performed to verify 
that the series was stationary. We did not detect non-sta-
tionary behavior, and subsequently, no transformation was 
performed prior to the drought analysis. The R package SPEI 
(Beguería and Vicente-Serrano 2017) was used for all cal-
culations. The Standardized Precipitation Index (SPI) was 
selected to characterize drought periods (McKee et al. 1993) 
and was based on fitting a Gamma statistical distribution 
to the rainfall empirical distribution. It was calculated on a 
monthly scale (SPI-1) due to our focus on meteorological 
drought as the precursor to other drought phenomena and 
then reclassified into four drought states (Table 1). SPI-1 
values greater than −0.99 were considered as “no drought.” 
The “moderate drought” category includes values between 
−1 and −1.49, while the “severe drought” category consists 

Fig. 1  Overview of the study 
region (small inlet map), the 
main Tempisque River, and 
the weather station location in 
the main panel (a) showing the 
mean annual spatial rainfall 
distribution and (b) the average 
monthly precipitation (1981–
2020) with the black lines indi-
cating the precipitation range 
for each month. Data source: 
Liberia International Airport 
weather station and CHIRPSv2 
(Funk et al. 2014) for the spatial 
rainfall map

Table 1  Definition of drought states

Drought categories States SPI-1
No drought 0 More than −0.99
Moderate drought 1 −1.0 to −1.49
Severe drought 2 −1.5 to −1.99
Extreme drought 3 −2.0 and less
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of −1.5 to −1.99. SPI-1 values less than −2 are categorized 
as “extreme drought.” The SPI-1 time series was divided 
into a calibration period (1937–1999), in which the probabil-
ities were calculated, and a validation period (2000–2020), 
in which the calculated probabilities were tested as an indi-
cator of forecasting performance.

3.3  Probabilistic models

3.3.1  Markov chains

Probabilistic models based on Markov chains are com-
monly used for drought prediction (Mishra and Singh 
2011; Avilés et al. 2016). According to Avilés (2017), 
these models are composed of “a set of transition probabil-
ity matrices that indicate the probabilities of occurrence 
of the states of a system for a time interval of the future 
from the information of the current state and/or states 
of past intervals, depending on the order of the model.” 
These transition probabilities determine the behavior of 
the Markov chains, and this converts them into conditional 
probabilities (Wilks 2003).

It is from these transition matrices that the next 
month’s drought category can be predicted based on 
the current month’s observation for first-order Markov 
chains (MC1). In the case of second-order Markov 
chains (MC2), it is the same principle, but with the dif-
ference that the forecast of the next month is based on 
the observation of two previous months. Here, we used 
non-homogeneous Markov chains considering the cli-
matic seasonality of the study area. The latter means that 
the probabilities are not fixed for any given month, but 
instead will vary from month to month. The transition 
probability of a month is determined by the category of 
the previous month. According to Steinemann (2003), 
this characteristic is known as the Markov Property, 
which is expressed as follows:

where pij represents the transition probability in which 
X(t+1) equals the category j given that Xt equals the cat-
egory i. To calculate the transition probability (pij), the rela-
tive frequencies, which are the conditional probabilities of 
the transitions between each category (mij), must be esti-
mated. This can be expressed as

where the numerator represents the number of transitions 
of the category i to the category j, while the denominator 
is the sum of the number of transitions of the category i to 
any other category.

(1)pij = Pr{X(t + 1) = j|Xt = i}

(2)pij = mi∕
(∑

j mij
)
i, j = 1

Unlike MC1 models, MC2 models require three sub-
scripts for the estimation of transition probabilities since 
dependencies of more than two time periods are consid-
ered for their calculation (Wilks 2003). The first subscript 
is the state or category at time t−1, the second is the 
category at time t, and the third is the state at future time 
t+1. According to Avilés et al. (2015), this is formulated 
as follows:

In this case, the transition probability phij, in which X(t+1) 
is equal to state j, is given by Xt being equal to drought state 
category i, and X(t-1) being equal to category h. The transi-
tion probabilities phij are estimated by

The numerator is the number of transitions from categories 
h and i to category j; and the denominator is equal to the 
sum of the number of transitions from categories h and i 
to any other category. This model considers values further 
back in time, so the number of possible transitions increases 
exponentially, resulting in larger matrices, compared to the 
MC1 model.

3.3.2  Bayesian networks

According to Madadgar and Moradkhani (2013), Bayesian 
networks describe the conditional dependence of a set of 
random variables based on direct acyclic graphs (DAG). 
Following Heckerman (1998), the first step in developing a 
Bayesian network is to define the variables and states to be 
modeled, in this case, the drought categories. The second 
step consists of generating the DAG that encodes the condi-
tional independence assertions, which is called the structure 
of the Bayesian network:

where xtn represents the forecast probabilities, which are 
calculated from the division of the predictive variables, 
i.e., the joint distributions associated with the variables. To 
define these distributions, we used copula functions, which 
model the joint behavior of the variables (Avilés et al. 2016; 
Madadgar and Moradkhani 2013). Copulas form multivari-
ate functions by linking uni-variate functions (Shiau 2006), 
which make it possible to separate the effects of dependence 
from the effects of marginal distributions. This simplifies 
the modeling of the dependence of the random variables 
(Schmidt 2006). These functions were introduced by Sklar 
(1959), who, in his theorem, describes how copulas interact 
between multivariate distribution functions and their mar-
ginal distribution. The theorem states that a multivariate 

(3)phij = Pr {X(t + 1) = j | Xt = i,X(t − 1) = h}

(4)phij = mhij∕
�∑

j mhij
�
h, i, j = 1

(5)P(xtn | xt1,… , x(tn − 1)) = P(xt1,… , xtn)∕P(xt1,… , x(tn − 1))
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distribution F(X1,…,Xn), for all X in the domain F, can be 
expressed as follows:

where the marginal distribution in the interval (0,1) is rep-
resented by U1 (X1), while C is the cumulative distribution 
(CDF) of the copula. Therefore, Eq. (5) can be reformulated 
as

Based on Eq. (7), the Bayesian network models can be 
calculated. For Bayesian networks of first order (BN1), it 
is necessary that n = 2; whereas if n = 3, we have the mod-
els of Bayesian networks of second order (BN2), which are 
expressed as follows:

Equations (8) and (9) must be rewritten so that the 
probabilities of each category do not exceed the CDF 
thresholds established in Table 1. Considering that xds 
represents the CDF threshold, the equations are defined as

The next step identifies the appropriate dependence struc-
tures to form the joint distributions (Avilés et al. 2016). For 
this, the temporal dependence is modeled by performing a 
copula fitting according to the marginal distributions. The 
CDF is used to convert the observations into pseudo-obser-
vations with values in the interval (0,1), which are the mar-
ginal distribution used in the copula fitting.

A total of four types of copulas are used: two elliptic 
(Normal and Student) and two Archimedean (Clayton 
and Frank). The best fit is selected according to two 
criteria:

• a p value greater than 0.05 and
• the lowest statistical value (S), based on the Cramér-

von Mises statistic, which is a measure of the distance 
between empirical and parametric copulas(Anderson 
1962) expressed as

 where S is the Cramér-von Mises statistic value; cEmp and 
Cθ are the empirical and parametric copulas, respectively, 
both of which fit the n-size data. Once the best-fit copulas 
are selected monthly and applied to Eqs. (10) and (11), they 

(6)F(X1,… ,Xn) = C {U1(X1),… ,Un (Xn)}

(7)P(xtn | xt1,… , x(tn − 1)) = C(Ut1,… ,Utn)∕C(Ut1,… ,U(tn − 1))

(8)P(Xt2 | Xt1) = C(Ut1,Ut2)∕Ut1

(9)P(Xt3 | Xt1,Xt2) = C(Ut1,Ut2,Ut3)∕(C[Ut1,Ut2])

(10)P(Xt2 ≤ xds | Xt1) = (C[U(Xt1),U(Xt2 ≤ xds)])∕(U[Xt1])

(11)
P(Xt3 ≤ xds | Xt1,Xt2) = (C[U(Xt1),U(Xt2),U(Xt3 ≤ xds)])∕(C[U(Xt1),U(Xt2)])

(12)
S = ∫

u
ΔC(u)2dC(u),

ΔC =
√
n
�
CEmp − Cθ

�

are used to develop the Bayesian networks of both first and 
second order.

3.4  Model forecast evaluation

From the previous steps, four models are obtained and 
statistically validated to select the most appropriate for 
drought forecasting. This validation uses a weighted prob-
ability score, known as Ranked Probability Score (RPS), 
and expressed as

This method calculates the forecast errors in terms of the 
probability attributed to the events. Additionally, it penal-
izes the forecasts that are further away from the observations 
(Avilés 2017). The result of Eq. (13) is the difference between 
the predicted probabilities (Ym) and the observed probabili-
ties (Om). A perfect forecast should have an RPS equal to 
zero, and the further away from this value, the greater the 
difference between the predicted and observed probabilities.

4  Results

4.1  Long‑term climatic variability and meteorologic 
droughts

Data from the airport weather station showed (Fig. 1) a 
marked difference in the amount of precipitation between 
the dry and rainy seasons. The dry months from December 
to April exhibited monthly rainfall averages of less than 
25 mm, while in the rainy months from May to November, 
rainfall exceeded 150 mm per month, except for November. 
There was a difference of approximately 165 mm between 
April and May, while from November to December, the 
change in average rainfall was almost 90 mm. Hence, no 
transition period between the seasons could be detected, 
as the increase in rainfall in May is almost immediate, and 
the decrease in precipitation in November is just as abrupt 
(Fig. 2); however, an analysis of daily or weekly data may 
reveal a transition period. The highest monthly rainfall 
occurs in September and October with an average close to 
340 mm. Between July and August, rainfalls are lower com-
pared to May to June and September to October. This period 
was also called mid-summer drought or “veranillo” (Alfaro 
2014). A Mann-Kendall test was performed on the time 
series which resulted in a z-value = 1.134 and a p-value = 
0.257, evidencing the stationarity of the time series.

The monthly Standardized Precipitation Index (SPI-1) 
was calculated from the precipitation data (Fig. 3) and 

(13)RPS =

s∑

m=1

(Ym − Om)2
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clearly identified that drought events have occurred his-
torically. In fact, two months of extreme drought were 
detected in July and August 1939 with SPI-1 = −3.7. This 
condition of an SPI-1 being equal to or less than −3.7 did 
not occur again in 57 years, until September 1996, with 
a record low SPI-1 of −4, and a year later, in September 
1997, the absolute minimum SPI-1 of −4.5 was detected. 
The most extreme drought in recent years occurred in July 
2014, with an SPI-1 of −3.4.

In summary (Table 2), the lowest monthly precipitation of 
the weather station was 0 mm, which exclusively occurred 
in dry months, while the maximum monthly precipitation 
was 818 mm. The monthly average was 137 mm, and the 
annual average was 1630 mm. The maximum SPI-1 was 3.0, 
corresponding to June 1979, with an accumulated monthly 
rainfall of 761 mm compared to a monthly long-term aver-
age of 137 mm.

4.2  Categorization of drought states

The SPI-1 values were reclassified according to Table 1, 
with the aim of identifying the months that presented a 
drought event, as well as recognizing the severity of the 
events and the frequency of occurrence.

Fig. 2  Heat map depicting average monthly precipitation (1937–
2020) for the airport weather station. The white shading represents 
low-to-zero precipitation, while the blue tiles represent higher accu-
mulated precipitation

Fig. 3  Monthly standardized 
precipitation index (SPI-1) 
for the airport weather station 
(1937−2020). The letter A 
indicates the extreme drought 
of July–August 1939. Letter 
B marks the extreme droughts 
of September 1996 and 1997, 
while letter C highlights the 
extreme drought of July 2014

Table 2  Summary statistics of precipitation time series and derived 
SPI-1

Min Max Mean SD Annual rainfall
Airport weather 

station (mm)
0.0 818.0 137.1 156.2 1630

SPI-1 −4.5 3.0 0 0.9 -

Table 3  Number of drought 
events observed per month and 
classified by drought state

Observed 
drought state

MAY JUN JUL AUG SEP OCT NOV Total

1 10 5 3 7 4 9 8 46
2 2 5 1 2 2 3 3 18
3 4 3 8 6 3 2 1 27
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Out of the 1002 months of the time series, 91 were in 
some category of drought, which represents about 9% of 
the data. As shown in Table 3, the moderate drought cat-
egory occurred most frequently with 45 events, followed 
by severe drought with 27 observed events, and finally, 
extreme drought with 18 events. Interestingly, the major-
ity of extreme drought events occurred in July and August, 
whereas moderate droughts occurred in May and October/
November.

4.3  Markov chain drought modeling

Equation (2) was applied to obtain the relative MC1 fre-
quencies of the transitions between months. Twelve transi-
tion matrices were obtained which established the transi-
tion probabilities for the current month given the previous 
month. The results for the rainy season are shown in Table 4. 
We only show the rainy months since the dry season months 
from December to April are a natural climatic feature of 
the seasonally dry tropics. Furthermore, the results for the 
dry season established a 100% probability of transition to 
the non-drought category for all dry months. Therefore, the 
MC1 model calculated – as expected – no drought prob-
ability for the dry season.

To interpret Table 4, the probabilities of the occurrence 
of a specific state for a month need to be compared with 
the probabilities of the same state of the previous month. 
For example, if May is in the no drought category, June 
has an 88% chance of remaining in that same category; an 
8% chance of moving to state 1 (moderate drought); a 0% 
chance of state 2 (severe drought); and there is a 4% chance 
of an extreme drought event (state 3). The MC1 model did 

not assign transition probabilities from one drought state to 
another in the month of May. The reason was that histori-
cally April has never presented any drought event, as shown 
in Fig. 4. In contrast, May has presented drought events, 
which allows calculating the transitions between drought 
states for the following months. For instance, when May 

Table 4  Rainy season transition 
probabilities of drought states 
for the MC1 model

Previous 
month’s state

Current state Current probabilities of transitions

MAY JUN JUL AUG SEP OCT NOV

0 0 0.78 0.88 0.86 0.87 0.96 0.84 0.90
1 0.16 0.08 0.02 0.07 0.02 0.14 0.06
2 0.02 0 0.02 0.02 0 0.02 0.02
3 0.05 0.04 0.11 0.04 0.02 0 0.02

1 0 - 1 1 0 1 0.50 0.56
1 - 0 0 0 0 0.50 0.22
2 - 0 0 0 0 0 0.22
3 - 0 0 1 0 0 0

2 0 - 1 1 0 0.50 0.50 1
1 - 0 0 0 0 0 0
2 - 0 0 1 0 0.50 0
3 - 0 0 0 0.50 0 0

3 0 - 0.67 1 0.33 0.33 0.67 1
1 - 0 0 0.17 0.17 0 0
2 - 0.33 0 0 0.33 0 0
3 - 0 0 0.50 0.17 0.33 0

Fig. 4  (a) Cumulative distribution function of the SPI-1 time series 
for the airport station showing the thresholds for each drought cat-
egory and (b) the resulting heatmap of historical drought occurrence
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presents a state 3, June has a 67% probability of changing to 
state 0, and a 33% probability of changing to state 2. August, 
September, and October are the months with the highest 
probability of transition to state 3, which, according to MC1, 
was the most likely trimester of extreme drought occurrence.

Equation (4) was used to calculate the drought state 
transition frequencies for the second-order Markov chains. 
These transitions consider the states of two months prior to 
the month to be forecast. The possible combinations increase 
from 16 possibilities in model MC1 to 64 in MC2 (Table 5).

The interpretation of Table 5 is similar to that of model 
MC1, with the difference that model MC2 takes into account 
two previous states. Thus, when May was in state 3 and 
April in state 0, June has a 67% probability of presenting a 
no drought event (state 0); it also has a 33% probability of 
being in state 2, while it has a 0% probability for states 1 
and 3. Another example is that if September is in state 0 and 
August is in state 1, then October has a 60% probability of 
no drought. Even if it would have a 40% probability of being 
state 1, no resulting state 2 and 3 droughts are possible.

It is also important to note that with MC1 and MC2, a 
50% probability of two opposite states can occur. This situ-
ation occurred in both models in September and October. 
This means that even considering two previous months, the 
Markov chain models have the disadvantage of giving the 
same probability for two opposite states, which represents 
a problem when deciding whether there will be a drought 
state.

4.4  Bayesian networks applied to analyze 
meteorological drought

The results from the validation period for the probabilities 
of the first-order Bayesian network per month in the rainy 
season are shown in Fig. 5. For all months, the no drought 
category exhibited the highest probability of occurrence, 
while the drought states 1–3 have a much lower probabil-
ity, each below 20% since the distributions observed in the 
calibration period tend to be above the no drought thresh-
old. However, the no drought category showed a decrease 
in the probability of occurrence after a drought event was 
observed, together with an increase in the probabilities of 
occurrence of a drought event. For example, in the month 
of May, the average probability of the no drought 0 category 
was 77%, but in 2008, that probability dropped to 65%, and 
in 2015, the probability was 60%; in those two years, mete-
orological drought events occurred.

This behavior was also present in other months, most 
notably in July, where two drought events occurred (2012 
and 2014), and the drought probabilities increased to almost 
25%, while those of the no drought category dropped 
to 35% probability. The only month that does not pre-
sent this behavior is June due to the weak correlation of 

pseudo-observations between May and June (Table 6), gen-
erating greater uncertainty in the transition of those months. 
In general, the best-fit dry season Copula was the symmetric 
Frank type, while in the rainy season, it was the asymmetric 
Clayton copula that predominated. The wider range of the 
Frank dependence parameter seems to better adapt to the dry 
season characteristics compared to the negative tail depend-
ence of the Clayton copula.

Similar to the first-order model, the second-order Bayes-
ian networks required the copula parameters to be fitted, 
which results in three-dimensional copulas. Therefore, the 
selection of copulas for this model included three param-
eters. The elliptic copulas (normal and T) were the best 
fit, except for June. This means that when two months are 
grouped together, the distributions were of an elliptic shape. 
The difference in the statistical value of the normal and T 
copulas was very small, considering more than five decimal 
places. Figure 6 shows the results of the second-order Bayes-
ian network model with the no drought category acquiring 
the highest probability (average of 84% probability) for all 
months. In addition, moderate drought has an average prob-
ability of 8%, severe drought of 5%, while extreme drought 
has an average probability of 3%. With the 2nd-order Bayes-
ian model, the probabilities remained stable throughout the 
validation period. July was the only exception since the 
probabilities were more inconsistent during the validation 
period and due to the heavy tail of the fitted Clayton cop-
ula. Therefore, this month showed that the probabilities of 
drought states increased when a drought event was observed, 
while the probability of the no drought category decreased 
with respect to its historical behavior.

4.5  RPS evaluation for all drought states

We compared the models using the RPS validation method 
for all categories, including the no drought category, for the 
validation period (2000–2020). The RPS values obtained are 
shown in Table 7 and visualized in Fig. 7.

From December to April, the MC1 resulted in an RPS = 
0, meaning a perfect prediction. However, this is because 
this model predicts a 100% probability of no drought in the 
dry months. The latter is to be expected, as shown in Fig. 4, 
since the dry season months do not experience meteorologi-
cal drought. In the case of the Bayesian network models, 
there is a difference between the forecast and the observed 
for those same months due to the Bayesian models always 
assigning probabilities of occurrence to the four drought cat-
egories. For the rainy season months, differences between 
forecasts and observations were observed contrary to the 
dry season.

In the first two months of the rainy season (May–June), 
the models showed a similar behavior; however, from July to 
November, the Bayesian networks outperformed the Markov 
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Table 5  Rainy season transition 
probabilities of drought states 
for the MC2 model

Previous 
months’ state

Current state Current probabilities of transitions

MAY JUN JUL AUG SEP OCT NOV

0-0 0 0.77 0.88 0.84 0.86 0.96 0.88 0.90
1 0.16 0.08 0.02 0.08 0.02 0.10 0.06
2 0.02 0 0.02 0.02 0 0.02 0.02
3 0.05 0.04 0.12 0.04 0.02 0 0.02

0-1 0 - 1 1 0 1 0 0.62
1 - 0 0 0 0 1 0.25
2 - 0 0 0 0 0 0.13
3 - 0 0 1 0 0 0

0-2 0 - 1 - 0 0 - 1
1 - 0 - 0 0 - 0
2 - 0 - 1 0 - 0
3 - 0 - 0 1 - 0

0-3 0 - 0.67 1 0.33 0.50 1 -
1 - 0 0 0.17 0 0 -
2 - 0.33 0 0 0 0 -
3 - 0 0 0.50 0.50 0 -

1-0 0 - - 0.90 1 - 0.60 1
1 - - 0 0 - 0.40 0
2 - - 0 0 - 0 0
3 - - 0.10 0 - 0 0

1-1 0 - - - - - - 0
1 - - - - - - 0
2 - - - - - - 1
3 - - - - - - 0

1-2 0 - - - - - - -
1 - - - - - - -
2 - - - - - - -
3 - - - - - - -

1-3 0 - - - - 0 - -
1 - - - - 0 - -
2 - - - - 1 - -
3 - - - - 0 - -

2-0 0 - - 1 1 - 1 1
1 - - 0 0 - 0 0
2 - - 0 0 - 0 0
3 - - 0 0 - 0 0

2-1 0 - - - - - - -
1 - - - - - - -
2 - - - - - - -
3 - - - - - - -

2-2 0 - - - - 1 - 1
1 - - - - 0 - 0
2 - - - - 0 - 0
3 - - - - 0 - 0

2-3 0 - - - - - 1 -
1 - - - - - 0 -
2 - - - - - 0 -
3 - - - - - 0 -
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chain models with RPS statistics closer to zero, more closely 
representing the observed drought states. The RPS calcu-
lated for the validation period and observed droughts from 
Table 8 and Fig. 8 showed the differences between the mod-
eled forecast and the observed droughts.

The two Markov chain models had similar behavior, 
except in July, where the first-order model showed a greater 
difference. In October, forecasts showed a decrease in per-
formance, but an improvement in November. The second-
order Bayesian model showed a similar performance to those 
of the Markov chains with greater differences in May. The 
first-order Bayesian networks showed the best performance 
throughout the rainy season. The best results were obtained 
for August and November.

5  Discussion

5.1  Drought characterization in the tropics using 
SPI

The Standardized Precipitation Index (SPI) was used to char-
acterize drought events monthly from January 1937 to June 
2020. At the long-term Airport meteorological station, mete-
orological drought events have historically occurred between 
May and November throughout the rainy season. The dry 
season months are characterized by little or no precipita-
tion, which is a climate feature, meaning that a significant 
decrease in precipitation in relation to the average rainfall for 
the dry season months is not possible. This variability in the 
behavior of meteorological drought can condition the results 

of the forecasts since the construction of the probabilities 
depends on the amount of input information given to the 
models. However, the 84-year precipitation record can be 
considered sufficiently long including enough information 
content in the form of climatic variability and drought events 
that historically occurred.

Large parts of Costa Rica including the Tempisque catch-
ment in the Guanacaste region are characterized by a climate 
condition known as mid-summer drought (MSD) or “vera-
nillo” in Spanish in July and August, which is characterized 
by an increase in trade winds and a decrease in precipitation 
(Ramírez 1983). This period occurs annually; however, its 
initiation and duration are variable (Amador 2008). Alfaro 
(2014) found that in the Tempisque basin between the period 
1949–2010, the MSD had an average duration of 45 days 
with an average rainfall of 2.7 mm. Therefore, it is important 
to take the MSD into consideration for drought forecast-
ing to be able to differentiate between a drought event and 
the recurrent MSD. The latter distinction could be achieved 
using the Bayesian networks, especially the first-order 
Bayesian network model which provides enough flexibil-
ity in assigning drought probabilities in the months when 
drought was observed, as shown in Fig. 5. However, it is 
important to mention that these probabilities of a drought 
state did not exceed those of the no drought state.

Another important climate influence on the Costa 
Rican Pacific is ENSO (El Niño Southern Oscillation) 
that associates a warming Pacific Ocean with a decrease 
in precipitation compared to average conditions. How-
ever, in the periods 1982–1983 and 1992–1993, when El 
Niño showed a strong signal (Wolter and Timlin 1998), 

Table 5  (continued) Previous 
months’ state

Current state Current probabilities of transitions

MAY JUN JUL AUG SEP OCT NOV

3-0 0 - - 1 1 1 0.50 1

1 - - 0 0 0 0.50 0

2 - - 0 0 0 0 0

3 - - 0 0 0 0 0
3-1 0 - - - - 1 1 -

1 - - - - 0 0 -
2 - - - - 0 0 -
3 - - - - 0 0 -

3-2 0 - - 1 - - 0.50 -
1 - - 0 - - 0 -
2 - - 0 - - 0.50 -
3 - - 0 - - 0 -

3-3 0 - - - - 0.34 0 1
1 - - - - 0.33 0 0
2 - - - - 0.33 0 0
3 - - - - 0 1 0
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this was not reflected in a state of drought. Between 1982 
and 1983, there were only two months of drought, but 
these were not consecutive and rather with a separation 
of eight months. Between 1992 and 1993, only May 1992 
showed a moderate drought, with an SPI-1 value of −1 
and slightly below normal precipitation. However, other 

periods classified as strong ENSO, which occurred in 
the years 1972–1973 and 1997–1998 (Wolter and Tim-
lin 1998), showed drought states in the observed time 
series. In 1972, there were four consecutive months of 
drought between July and October; in 1973, there was no 
drought since El Niño had already weakened by the end 

Fig. 5  Monthly probabilities of 
the first-order Bayesian network 
model for the rainy season of 
the validation period from 2000 
to 2020

Table 6  Correlations of the 
pseudo-observations for each 
month at the airport weather 
station

Correlation 
coefficient

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Pearson −0.09 −0.78 0.75 0.80 0.16 0.02 0.20 0.66 0.79 0.49 0.22 0.13
Kendall −0.03 −0.59 0.62 0.65 0.11 0.03 0.12 0.47 0.61 0.35 0.14 0.09
Spearman −0.09 −0.78 0.75 0.80 0.16 0.02 0.20 0.66 0.79 0.49 0.22 0.13
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of the previous rainy season. Between 1997 and 1998, a 
very strong El Niño was recorded in the region, resulting 
in a 3-month long extreme drought event from August 
to October 1998, also shown by Muñoz-Jiménez et al. 
(2018) relating rainfall deficit to ENSO indicators. The 

latter authors also identified that strong ENSO events 
do not always result in a significant rainfall deficit and 
subsequent drought events in northwestern Costa Rica, 
mainly due to the complex teleconnection with the nearby 
Caribbean Sea (Enfield and Alfaro 1999).

Fig. 6  Monthly probabilities 
of the second-order Bayesian 
network model for the rainy 
season of the validation period 
from 2000 to 2020

Table 7  RPS values for all 
models and all state categories

Values that meet the best-fit selection criteria for each month, which are the values equal to or closest to 
zero, are highlighted in bold and underlined

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

MC1 0 0 0 0 0.235 0.485 0.381 0.485 0.098 0.231 0.131 0
MC2 0 0 0 0 0.235 0.485 0.374 0.386 0.185 0.251 0.173 0.044
BN1 0.153 0.112 0.035 0.039 0.182 0.498 0.218 0.105 0.099 0.185 0.121 0.11
BN2 0.097 0.029 0.011 0.016 0.236 0.506 0.257 0.107 0.102 0.226 0.145 0.082
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5.2  Forecasting capability of the tested 
probabilistic drought models

The framework of the Markov chain models is both sim-
ple and efficient (Sharma and Panu 2012); however, the 
results of these models showed, in this study, transition 
combinations between states that have not been observed 
historically. The latter resulted in the MC1 and MC2 mod-
els being unable to calculate probabilities (these cases are 
represented in Tables 3 and 4 with a dash). However, the 
fact that some combinations have not been observed does 
not mean they cannot occur in the future. Similar to Can-
celliere et al. (2006), this generates errors in the transition 

probabilities, which makes these models unsuitable for 
very complex systems (Fung et al. 2020).

The Markov chains showed reasonable performance in 
the dry season since they were able to predict the no drought 
events with perfect RPS values (Table 8). However, this was 
expected since (Fig. 4) the dry season is a climatic feature of 
the study region rather than a drought event. Similarly to Liu 
et al. (2009), Markov chains achieved better performance in 
the no drought and moderate drought states but presented 
problems in forecasting events of greater severity. On the 
other hand, the first-order model (MC1) performed slightly 
better than the second-order model (MC2), meaning that, 
although MC2 has more information to base the forecast 

Fig. 7  Model validation for all 
state categories from January 
to December using the RPS 
criterion

Table 8  Calculated RPS values 
for all models and only for 
drought state categories

Values that meet the best-fit selection criteria for each month, which are the values equal to or closest to 
zero, are highlighted in bold and underlined

MAY JUN JUL AUG SEP OCT NOV

MC1 1.937 1.655 1.765 0.766 0.961 1.960 0.815
MC2 1.937 1.655 1.052 0.868 0.960 1.862 0.801
BN1 1.390 1.676 0.760 0.402 0.555 1.210 0.397
BN2 2.372 1.725 1.045 0.832 0.839 1.996 0.736

Fig. 8  Model validation for the 
months presenting a drought 
category 1–3 using the RPS cri-
terion (excluding the dry season 
from December to April)
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upon, this does not necessarily lead to better forecasts (Rah-
mat et al. 2016).

According to Avilés et al. (2016) and Madadgar and 
Moradkhani (2013), models based on Bayesian networks 
(BN) have the potential to better forecast droughts than 
Markov chain models. The Bayesian networks (BN1, BN2) 
obtained the lowest RPS scores, in addition to monthly dis-
tributions that appropriately reflected observed droughts. 
Then, the probabilities of no drought decreased, and those 
of any drought category increased. Thus, as in Ji Yae Shin 
et al. (2016), Guo et al. (2019), and Raza et al. (2021), BNs 
generated a solid framework for forecasting drought events 
in the rainy season of our study region, particularly for the 
months August and November. The latter because although 
the likelihood of a non-drought state is higher, the decrease 
in probability during months when droughts were observed 
and the slight increase in drought probability suggested that 
the precipitation data distribution is not normal compared to 
past years, warranting caution in case this trend continues, as 
it may obscure the occurrence of a drought state.

Furthermore, the use of time-variable copula functions in 
BN models was an advantage to better match the observed 
data distributions despite more complexity. Thus, each 
month has a specific fit, and even when the same copula 
type is applied for multiple months, the fitted parameters 
allow the forecasts to adapt to the climatic condition of 
each month according to the behavior of the distributions. 
According to Shiau (2006), copula functions allow to con-
struct a dependence structure between variables. The best-
fit Clayton copulas were fitted in June, July, August, and 
October and obtained the best results in forecasting the 
observed drought events. This type of copula is character-
ized by a strong density and concentration of data in the 
left tail (Mendoza and Galvanovskis 2014), meaning that 
there is a relationship with negative events or, in this case, 
drought states. It can, therefore, be expected that drought 
events in any month increase the probability of a drought in 
the month to follow.

The BN1 models incorporated 2 months of information 
and can use the actual SPI data, unlike the MC1 models, 
which only contemplate the binary information (drought cat-
egories) of a single month. This allows the BN1 model to be 
more dynamic since the information is constantly adapted 
and updated monthly using parametric copula and marginal 
distributions. In the case of MC2, it was found that higher-
order Markov chains presented problems when sizing and 
projecting data since the more months accumulated, the 
fewer transitions are considered. The latter thus generates 
a poor approximation of the transition probabilities (Lall 
and Sharma 1996). Even though we tested different types 
of copulas, non-parametric approaches allow us to avoid a 
priori assumptions about the choice of a model similar to 
Sharma and Lall (1999).

One of the limitations of the probabilistic models pre-
sented is that they depend on the time series characteris-
tics of historic data and, in our case, on the probabilities 
calculated based on monthly SPI values. In other words, 
to forecast the following months’ drought category, it is 
necessary to know the precipitation in advance. Therefore, 
this class of time series models needs to be coupled to a 
regional climate model precipitation forecast. Steyn et al. 
(2016) stated that a double Gaussian function effectively 
modeled the annual precipitation cycle in Guanacaste, 
which could be an option to build a model that predicts 
precipitation and forecasts droughts within a BN. Addi-
tionally, the models presented are strictly only valid in 
the case of stationarity, which might limit their use with 
strongly non-stationary time series. Here, we could show 
that since 1937, the precipitation record did not show 
changing mean nor variance over time, justifying the use 
and potential of the models applied.

6  Conclusions

Historical drought events in Guanacaste, Costa Rica, 
were analyzed, and probabilistic meteorological drought 
forecasts were obtained using the 84-year long-term air-
port weather station records. From the comparison and 
validation of these models, we conclude that the first-
order Bayesian networks showed the best performance 
for monthly forecasts with the ability to differentiate 
between the climatic characteristics of dry and rainy sea-
son months. The probability of predicting a drought never 
reached the level of the non-drought state with Bayes-
ian networks, which also showed greater sensitivity with 
a slight increase in the probability of drought for some 
months compared to the other models. The Bayesian net-
work model also automatically adjusted the probabilities 
during the wet season according to the monthly behavior, 
even when the no drought category had the highest prob-
ability. The latter is a critical advantage since it allows 
the forecast to be dynamically based on the drought status 
of increasing or decreasing drought probabilities. Future 
research will explore the applicability of these models 
with SPI at different temporal scales to detect and fore-
cast other types of droughts that have a more direct impact 
on communities, such as hydrological and agricultural 
droughts. The latter will also enable to increase in the 
lead time of forecasted drought events.
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