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A B S T R A C T   

Topology optimization of bridge structures is challenging due to the difficulty in accounting for the stochastic 
dynamic nature of the moving vehicle loads. As a result, optimization for this common type of structure and 
loading is limited in the existing literature. Existing topology optimization approaches for addressing stochastic 
dynamic loading can be classified as time domain, frequency domain, or random vibration methods. Herein, a 
new compact representation of random moving traffic loading as a filtered white noise is developed which 
enables stochastic topology optimization to be performed. This optimization utilizes an objective function which 
combines the mean and standard deviation of responses to minimize the extreme response to random traffic 
loading. Examples show a significant improvement of the bridge response, represented by a reduction in the 
standard deviation at a minimal cost to the mean response. Also, optimal topologies for different traffic pa
rameters such as speed and arrival rate are relatively similar, indicating a robust solution. With this approach, 
bridge topology can be efficiently optimized for random moving traffic loading by enabling direct minimization 
of response extremes, which represents the probabilistic design intent to achieve adequate levels of performance 
under the loading uncertainties in typical bridges.   

1. Introduction 

The importance of transportation infrastructure cannot be over
stated. In both rail lines and highways, bridges are a critical component 
of the transportation network, not only for crossing natural obstacles, 
but also other infrastructure. In the United States alone, there have been 
an average of more than 50,000 new roadway bridges built each decade 
since 1950 [1]. The constant need for new bridge construction presents 
an opportunity to extend recent developments in structural optimization 
to enable more efficient structural systems, while still meeting design 
objectives. A major challenge here is that modern bridge design codes 
aim for a uniform level of reliability by accounting for intrinsic uncer
tainty. This reliability is achieved by applying calibrated load and 
resistance factors to the design load and nominal resistance. These 
factored loads simulate the upper tail of the probabilistic load, i.e., mean 
plus a number of standard deviations. However, accounting for this 
loading uncertainty in structural optimization is challenging. 

Some researchers have used topology optimization to investigate the 
influence of various conditions on optimal bridge design. For example, 
multiple authors considered self-weight [2–4], member buckling [5–7], 

or multiple materials [8–10] in the optimization formulation. Other 
researchers examined different tension and compression behavior 
[9,11–14], constructability [15], and aesthetics [16–18]. In these pa
pers, traffic is represented as a uniform static load. Other researchers 
have explicitly modeled the traffic loading as a discrete random field 
load [19–22], where loading consists of static point loads of random 
magnitude and location, or a continuous random field load [23–26], 
where loading is represented by a static distributed load with random 
amplitude. Alternatively, dynamic traffic loading can be modeled as a 
deterministic moving load. Giraldo-Londoño and Paulino [27] devel
oped a topology optimization that could account for deterministic dy
namic loads and provided an example for a bridge structure. All of these 
studies approximate the traffic loading as static and or deterministic, 
neglecting the random dynamic nature of these loads. 

Very little research has appeared regarding topology optimization of 
structures subjected to stochastic dynamic loads. Some work has been 
done for wind and earthquake loaded structures [28,29], which assume 
that the loading is a continuous random process. Because traffic loading 
is a discrete random field process, direct application of this approach to 
topology optimization of bridge structures subjected to traffic loading is 
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not possible. Golecki et al. [30] proposed a continuous random process 
representation of the traffic loading and employed it for the analysis of 
truss-type structures. While this approach is promising, topology opti
mization is shown herein to require a finer discretization of the load than 
is currently feasible, leaving topology optimization of bridge structures 
due to stochastic dynamic traffic loading yet to be reported. 

In this paper, an approach for bridge topology optimization that 
explicitly considers the stochastic dynamic nature of the traffic loading 
is proposed. First, a new compact formulation of the continuous random 
process model of the traffic loading is presented that enables efficient 
bridge topology optimization to be achieved. Subsequently, this sto
chastic topology optimization framework is adapted to allow for a 
reliability-based interpretation. Finally, the efficacy of the proposed 
approach is demonstrated through several numerical studies. This 
approach is intended to serve as a part of the conceptual design process. 
After optimization, discrete members can be interpreted from the to
pology in the next phase of the design allowing for engineering judge
ment as well as other design considerations such as aesthetics and 
constructability. The remainder of this paper is organized as follows. 
Section 2 presents the structural and loading systems represented 
together in an augmented state space system to enable solving for the 
stochastic responses. The topology optimization formulation and solu
tion approach is discussed in Section 3 followed by a numerical example 
in Section 4 and conclusions in Section 5. 

2. Stochastic response of bridges subjected to vehicular traffic 

Consider the bridge structure shown in Fig. 1a, where the random 
traffic loading is a discrete random field, with vehicles represented by 
point loads of random weight and spacing moving at a constant speed. 
To determine the stochastic response of the bridge, Golecki et al. [30] 
proposed a continuous filtered white noise model for vehicular bridge 
traffic and utilized random vibration theory to determine the stochastic 
responses as outlined in the block diagram of Fig. 1b. For the conve
nience of the reader, this approach is first briefly reviewed. Then, the 
computational effort required in this approach is explored and shown to 
be intractable for structural optimization purposes. Subsequently, a new 
compact formulation of the traffic loading model is proposed that will 
enable bridge topology optimization, as formulated in Section 3. 

2.1. Stochastic structural responses 

The response of an arbitrary linear system can be defined via the 
state space representation. For this application, the augmented system 

shown in Fig. 1b consists of a loading system in series with a structural 
system. The state space representation of the filter modeling the sto
chastic load is given by 

ẋf = Afxf +Bfw(t)

f(t) = Cfxf (1)  

where Af , Bf , and Cf are the system matrices, w(t) is a white noise input 
process, and f(t) is the vector of output forces at locations along the 
bridge. The state space representation of the structure is given by 

ẋs = Asxs +Bsf(t)

y = Csxs +Dsf(t) (2)  

where the state vector xs represents the displacement and velocity of 
bridge degrees of freedom (DOF), f(t) is the input loading vector and 
system matrices are defined as 

As =

[
0 I

− M− 1K − M− 1C

]

, Bs =

[
0

− M− 1G

]

(3)  

where M,C,K, and G are the mass, damping, stiffness, and load effect 
matrices respectively, 0 is a matrix of zeros and I is an identity matrix. 

The state space and measurement equations for the augmented sys
tem shown in Fig. 1b are given by 

ẋa = Aaxa + Baw(t)

y = Caxa (4)  

where Aa, Ba and Ca are the state space matrices of the augmented 
system, xa is the augmented state vector, and y is a vector of output 
quantities. The augmented state space matrices are given by 

Aa =

⎡

⎣
As BsCf

0 Af

⎤

⎦ Ba =

⎡

⎣
0

Bf

⎤

⎦

Ca = [Cs DsCf ]

(5) 

The covariance of the response of this system to a stationary zero- 
mean stochastic excitation is given by the Lyapunov equation [31] 

AaΓx + ΓxAT
a + 2πBaS0BT

a = 0  

Γy = CaΓxCT
a (6) 

Fig. 1. a Schematic of an arbitrary bridge subjected to moving random loads (b) Block diagram interpretation of the analytical model.  
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where S0 is the magnitude of the two-sided constant power spectral 
density (PSD) of the input, and Γx and Γy are the covariance matrices of 
the system states and measured response, respectively. The next section 
describes how the random traffic loading can be represented as a filtered 
white noise process. 

2.2. Continuous filtered white noise representation of vehicular traffic 

The most common approach to modeling random traffic loads is as a 
spatiotemporal random field, f(x, t), in which the arrival of vehicles at 
the bridge is defined by a compound Poisson process. The vehicles are 
represented as random magnitude point loads, with a mean, μA, and 
standard deviation, σA, arriving at random times with a constant arrival 
rate, λ (vehicles/time), and travel across the bridge at a constant speed, 
v. The corresponding traffic density (vehicles/length) is computed as 
λ/v. Additional traffic lanes can be represented as separate independent 
random processes. This process can be shown to be weakly stationary, 
with a static mean μf = μAλ/v and a power spectral density given by 

S(Δx,ω) =
λ
(
μ2

A + σ2
A

)

2πv2 e− iωΔx
v (7)  

where Δx is the distance along the span, and ω is in radians/sec. The 
term λ

(
μ2

A +σ2
A
)/

2πv2 is a constant scaling factor; the complex expo
nential exp( − iωΔx/v) is the frequency domain representation of the 
time delay, Δx/v, which corresponds to the time required for the load to 
travel a distance Δx. Because of this time delay, creating a loading model 
such as is given in Eq. (1) that has the PSD given in Eq. (7) requires an 
infinite dimensional state space representation [32], which is not real
izable. To address this problem, Golecki et al. [30] used Padé approx
imants, which are rational polynomial approximations of the time delay 
function with a polynomial order selected to ensure accuracy up to a 
specified target frequency. The random field for the traffic loading is 
then discretized in space realized into the state space representation 
given in Eq. (1). The interested reader is directed to Golecki et al. [30] 
for more information. 

While effective, the accuracy of this approach is a function of the 
spatial discretization for the random process. Topology optimization 
requires a relatively fine discretization of the load, which results in very 
large loading system matrices. A balanced model reduction can be 
applied to reduce the size of the system and the associated time to 
compute the stochastic responses [33]; however, this balanced reduc
tion operation can be extremely time and memory intensive. For 
example, balanced model reduction of a loading system with 256 out
puts, Δx/v = 0.03s, and a typical target frequency of 5 Hz fails due to 
memory limits on a machine with 32 Gb of RAM. A new approach is 
required to use this traffic loading model for topology optimization. 

2.3. New compact formulation of traffic loading model 

This section proposes a new compact formulation of the traffic 
loading model that increases computational efficiency and enables the 
subsequent topology optimization. The state space representation of the 
traffic loading system described in the previous section builds a system 
of delays for each point corresponding to the spatial discretization of the 
loading on the bridge. The state space matrix Af is block diagonal, with 
each block representing one of the Padé approximants, which results in 
an extremely large and sparse matrix; the subsequent model reduction 
requires very large computational resources and time. To reduce the 
computational burden, longer delays can be represented as a combina
tion of shorter delays, which enables the same subsystem to be used as a 
part of multiple spatially discretized outputs. In this approach, referred 
to here as the compounding method, the assembly is represented as 

d2 =

[
d(Δx/v)
d(2Δx/v)

]

(8)  

d2i+1 =

[
d2i

d
(
2iΔx/v

)
*d2i

]

for i = 1, 2, ⋯ (9)  

where d(Δx/v) represents a state space system for the time delay of 
Δx/v, dn represents the assembled system for all delays from Δx/v to 
nΔx/v, and the operator * represents combining the two systems in se
ries (i.e., creating a single system using the output of the first system as 
the input to the second). A block diagram representation of Eq. (8) is 
provided in Fig. 2. The assembly procedure starts with the base system in 
Eq. (8), then iteratively applies Eq. (9) as many times as needed for the 
given domain. For instance, a loading system of 512 outputs would 
include indices i = 1 through i = 8, where the final application of Eq. (9) 
would produce a system with 29 outputs. An example of the iterative 
assembly procedure including a block diagram representation at each 
iteration is shown in Appendix A. 

This formulation of the loading system results in a substantial 
reduction in the overall size of the model. Fig. 3a depicts the size and 
sparsity of the matrix Af using the approach in [30], with a spatial 
discretization of 128 points, and Δx/v = 0.06s. Fig. 3b shows the 
resulting matrix Af using the new compact formulation, which is sub
stantially smaller, although it is no longer block diagonal. The com
pounding method results in a 94% reduction of the number of nonzero 
values needed to define the system. The resulting behavior of these two 
system assembly approaches is shown in Fig. 3c which compares the 
phase angle of the outputs corresponding to the time required to travel 
1/4, 1/2 and 3/4 of the span with the exact phase of − Δxω/v. The 
agreement below the 5 Hz target frequency indicates equivalent 
behavior of both methods. Using this new formulation, the balanced 
reduction operation takes much less time, less than 60 s for this system 
built by the compounding method, compared to 73 min for the original 
method. However, this spatial discretization is shown in the later ex
amples to be inadequate for topology optimization. For a more refined 
spatial discretization of the loading system (e.g., 256 points), balanced 
reduction of the system using the original formulation failed, whereas 
the proposed compact formulation successfully completed in 5 min on a 
computer with an Intel Xeon E3- 1285 v6 @4.10 GHz processor and 32 
Gb of RAM. This compact form of the loading system enables efficient 
balanced reduction of loading systems needed for optimization with 
vastly reduced computational resources. 

3. Topology optimization 

The topology optimization design domain is shown schematically in 
Fig. 4, with the temporally continuous spatially discrete representation 
of random traffic loading superimposed. The bridge structure described 
by Eqs. (2) and (3) is represented as a 2D mesh of plane stress elements. 
Here the density method is employed, where design variables, z, 
represent the individual element densities and are continuous between 
zero and one. Thus, the optimization statement can be given by 

( )
( )

( )

Fig. 2. Block diagram representation of the system d2, from Eq. (8) with out
puts labeled with their time delay. 
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min
z

J(z) = ϕ(Γx(z), μu(z), z )

s.t. g(z) = V(z) − Vmax = 0
AaΓx + ΓxAT

a + 2πBaS0BT
a = 0

Kμu = Gμf

zn ∈ [zmin, zmax] for n = 1, 2,…Nel

(10)  

where the objective function J(z) is a function, ϕ, of the covariances, 
Γx(z), and the static mean, μu(z), of the stochastic dynamic responses. 
The total volume, V(z), is constrained by Vmax. Two state equations are 
considered, one for the covariances and the other for the static mean of 
the stochastic dynamic responses. In the static state equation, K is the 
structural stiffness matrix, μf is the spatially discretized vector of mean 
nodal loads, μu is the vector of displacements due to the mean loads and 
G is the load effects matrix. Design variables are limited to be between 
zmin and zmax; here we use bounds of 0.001 and 1.0 and Nel is the total 
number of elements in the domain. 

3.1. Objective functions 

Minimizing the sum of nodal responses of the vertical DOF at the 
floorbeam nodes is considered as the optimization objective. As those 
are also the loaded degrees of freedom, where each DOF experiences the 
same moving vehicle load, this objective is somewhat akin to a dynamic 
compliance objective. These output responses are selected in con
structing the Cs and Ds matrices, which is then used in Eq. (5) to 

determine Ca. Because the responses of interest specified in the Cs ma
trix are displacements, which have a nonzero response to the mean 
loading, a combined objective of the mean plus k standard deviations is 
proposed here, based on the design intent of reliability-based design 
codes, which typically scale load effects from a nominal load by cali
brated load factors to represent the upper tail of the probabilistic load. 
Here, we achieve a similar intent by optimizing for the upper tail of the 
probabilistic response represented by 

Jμkσ(z) = Jsom(z)+ kJsosd(z) (11)  

where k is a constant. There are two components here, first the sum of 
means, given by Jsom, is 

Jsom(z) =
∑

Cs

[

K(z)− 1Gμf
0

]

= LT
s μu (12)  

where Ls is a vector of zeros except for ones at the DOF included in the 
objective. In this expression, μu is the vector of mean responses, which 
when multiplied by LT

s results in the sum of means of selected DOF. 
Second, the sum of standard deviations, given by Jsosd, is 

Jsosd(z) = tr
(

Ca(Γx(z) )∘1
2CT

a

)
(13)  

where ∘ is the Hadamard (elementwise) operation and tr( • ) is the trace 
operator. The elementwise square root converts the diagonals of the 
covariance matrix into standard deviations, the multiplications by Ca 

Fig. 3. Size and sparsity comparison of an example loading system matrix, Af , built using (a) the block diagonal method and (b) the compounding method. (c) A 
comparison of select outputs from both methods compared to the exact value. 

Fig. 4. Schematic of the idealized optimization problem of a bridge subjected to random moving traffic loads, where the horizontal axis normal to the structure 
represents time; a random input process is delayed incrementally and applied at discrete locations representing movement across the span. 
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removes DOF not included in the objective and the trace operator sums 
the remaining standard deviations. 

3.2. Response sensitivities 

The optimization procedure considered here is gradient-based, and 
therefore requires computing the sensitivities of the objective and 
constraint functions with respect to the design variables. As the mean 
loading portion of the combined objective given by Jsom is static, this 
portion of the sensitivity calculation is readily available in other refer
ences [34,35] and is not derived here. This sensitivity is given by 

∂Jsom

∂z
=

(
− LT

s K− 1)
(

∂K
∂z

μu

)

(14) 

The sensitivity of the sum of standard deviation objective given by 
Jsosd is computed using the adjoint method. Here, the residual is the 
stationary Lyapunov equation 

R = AaΓx + ΓxAT
a + 2πBaS0BT

a = 0 (15) 

and the Lagrangian including the adjoint matrix Λ is 

L = Jsosd + tr(ΛR)

L = tr
(

Ca(Γx(z) )∘1
2CT

a

)
+ tr

(
Λ
(
AaΓx + ΓxAT

a + 2πBaS0BT
a

) )
(16) 

The resulting sensitivity is 

∂L
∂z

= tr
(

∂CaCT
a

∂z
Γx

∘1
2

)

+ tr
((

∂Aa

∂z
Γx + Γx

∂AT
a

∂z
+

∂
∂z

(
2πBaS0BT

a

)
)

Λ
)

(17)  

where the adjoint matrix Λ is determined by the Lyapunov equation 

AT
a Λ + ΛAa +

ϕ
∂Γx

= 0 (18) 

For the sum of standard deviation objective function, ϕ = Jsosd, the 
partial derivative with respect to the state variance, ∂Jsosd/∂Γx, is 
computed as 

∂Jsosd

∂Γx
= Cadiag

⎛

⎜
⎜
⎜
⎝

dΓ∘1
2

x

dΓx

⎞

⎟
⎟
⎟
⎠

CT
a =

1
2
Cadiag

⎛

⎜
⎝Γ∘− 1

2
x

⎞

⎟
⎠CT

a (19) 

Where diag( • ) represents the diagonal operator, with only the di
agonal elements of the matrix. Note that the elementwise square root 
does not necessarily preserve the positive semi-definite nature of the 
covariance matrix. However, because the system output consists only of 
individual degrees of freedom results (each row of the Ca has a single 
nonzero value), only the diagonal terms of the covariance matrix are 
used. Because the diagonal terms are always positive, the result is always 
a positive real number. Additional details about the stochastic dynamic 
sensitivity for other objectives can be found in Gomez and Spencer [36]. 

3.3. Implementation details 

Implementation of the topology optimization procedure follows the 
form outlined below. For a given design domain, the problem is first 
idealized into a representative set of loading and structural parameters, 
which serve as inputs to the optimization routine. Then, the following 
steps are performed:  

• Initialize: Any quantities used by the optimization routine that are 
constant throughout the process can be computed outside of the 
iterative loop to save computation time. This initialization includes 
building and balanced reduction of the loading system if it has not 
been computed previously, as well as the filter matrix and sets of 

indices that map individual elements to corresponding rows and 
columns of the global matrices for efficient assembly operations. 
Also, the initial values of the design variables are established.  

• Linear Static and Stochastic Dynamic Analysis: Using the design 
variables, build the structural system and augmented state space 
matrices. Then solve for the static response to the mean load and the 
stochastic dynamic response variance using the stationary Lyapunov 
equation.  

• Compute Sensitivities: Use the adjoint approach to solve for the 
sensitivities of the static mean response and the stochastic dynamic 
response.  

• Update Design Variables: Using the sensitivities, compute the new 
set of design variable values. This updating step requires a procedure 
that can handle both positive and negative values, here the Gener
alized Optimality Criteria Method (GOCM) [37] is used. 

• Convergence: If the iterations are no longer changing design vari
able values or improving the objective function, results have 
converged. 

To facilitate the optimization routine, while maintaining an accurate 
representation of the bridge structure, a number of additional features 
need to be considered, as discussed below. 

3.3.1. Lumped masses 
For the structures considered here, the optimization generates a 2D 

idealization of the bridge superstructure. This approximation does not 
include components in the out of plane dimension, required to distribute 
load from the vehicles to the superstructure, i.e., the floor system. The 
mass of the floor system components (floorbeams, stringers, concrete 
deck, etc.) as well as the mass from other nonstructural components 
(railings, curbs, barriers, wearing surfaces, utilities, etc.) is accounted 
for using discrete lumped masses at the nodes designated as floorbeam 
locations. These masses are independent of the density design variables 
and are added to the mass matrix of the element mesh in each iteration 
of the optimization. 

3.3.2. Guyan reduction 
To improve computational efficiency, the size of the structural 

matrices can be reduced via Guyan reduction [38], which has been 
demonstrated in topology optimization of buildings [29]. Generally, a 
large portion of a bridge structure’s mass is within the concrete deck. As 
shown in [39], typical steel weight for an arch type bridge superstruc
ture can be estimated by 

wt = 0.027L+ 2.3962 (20)  

where wt represents the weight of steel per road surface area in units of 
kN/m2 given a span length of L (m). For a 200m span, wt is 7.8 kN/m2, 
assuming the same structure has a concrete deck of thickness 0.2m and 
weight density of 23.6kN/m3, the deck weight is 4.7 kN/m2, resulting in 
a weight distribution of 62% superstructure and 38% deck. If additional 
dead loads applied directly to the deck are considered (for example 
nonstructural elements, wearing surfaces, utilities, etc.) the percentage 
of the weight directly at the deck level is even higher. As a result, the 
inertial forces associated with the floorbeam degrees of freedom are 
selected as the retained DOF; the validity of the Guyan reduction for 
bridge structures is shown in the first numerical example. For more in
formation on the use of the Guyan reduction in topology optimization, 
see Gomez et al. [29]. 

3.3.3. Passive region 
To ensure stability of the optimization process, the elements in the 

domain corresponding to the road elevation are enforced as a passive 
solid region, typically consisting of one or more rows of elements. That 
is, this region of elements is not part of the design domain and is always 
considered to have a unit element density. This approach prevents the 
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load from being applied on a very low stiffness region. From a practical 
perspective, this row of elements is akin to a bottom chord of a truss, or 
the tie of a tied arch bridge. While this passive solid may not be needed 
for the vertical displacement objectives considered here, it provides a 
lateral load path for longitudinal demands from vehicle braking and 
seismic loading. 

3.3.4. Penalty & filter 
To push the topology toward a nearly binary result, a modified SIMP 

material penalization scheme is used as recommended by Gomez and 
Spencer [36] where both the material modulus, E, and mass density, ρ, 
are functions of the element design density, z. 

E(z) = [∊+(1 − ∊)zp ]E0  

ρ(z) =
{

zqρ0 if z ≥ 0.1
10p+3− qzp+3ρ0 if z < 0.1 (21)  

where E0 and ρ0 are Young’s modulus and density for the solid material, 
∊ is a small but nonzero value, and p and q are penalization factors. SIMP 
is implemented in a continuation approach along with a density filter to 
avoid a checkerboard type solution as recommended by Bendsøe and 
Sigmund [34]. To achieve a nearly binary final topology, the filtering 
scheme is changed to a sensitivity filter during the last step of the pen
alty continuation. Note that many variants of the sensitivity filter have 
been explored [40]. Here, a modified version that eliminates the density 
weighting in the denominator is used, shown as equation (16) of Sig
mund [40] without ρe in the denominator. 

3.3.5. Enforced symmetry 
For traffic in a single direction, the loading and the resulting topol

ogy will not be symmetric; thus, the system cannot be evaluated using 
half of the domain, as typically done to reduce the size of static topology 
optimization problems. If the applied loading considers symmetric lanes 
of traffic, that is an equal number of lanes in each travel direction, then 
the loading will be symmetric, as well as the topology. Nonetheless, we 
would like to have a symmetric structure, even at some modest cost to 
the objective function; therefore, symmetry is enforced by modifying the 
sensitivity matrix to be symmetric. 

3.3.6. Parameter Update scheme 
The process of updating design variables given the sensitivities of the 

objective and constraint can be achieved in a number of ways. The 
method of moving asymptotes MMA [41] is popular and highly cited. 
More recently developed alternatives include ZPR [42], or the Gener
alized Optimality Criteria Method (GOCM) [37]. The GOCM method is 
selected here for its simplicity and effectiveness. This approach sepa
rates the positive and negative portions of the sensitivity to enable an 
updating scheme that is nearly as straightforward as the original opti
mality criteria approach. 

3.3.7. Parallelization 
One of the most time-consuming portions of the procedure described 

herein is the calculation of element sensitivities per Eq. (17). However, 
because each element’s sensitivity is independent of other elements, 
these can be computed in parallel, substantially reducing the total time 
required, especially on computers that support a high number of parallel 
processes. 

Using the methodology and implementation details described here, 
the following section demonstrates the efficacy of this topology opti
mization approach with a numerical example. 

4. Numerical studies 

In this section, the proposed optimization procedure is demon
strated. Because the topology optimization process tends to produce 

arch-like or truss-like structures, the target span length considered here 
is selected based on typical spans for these bridge types, which is in the 
range of 120m to 310m for arch bridges and 120m to 370m for truss 
bridges [43]. For this example, a pin supported bridge with a 200m span 
is considered. The design domain represents the bridge superstructure, 
but not the floor system. As such, the moving loads are assumed to be 
carried by the floor system (deck, stringers and floorbeams) to the su
perstructure at discrete intervals corresponding to the floorbeam loca
tions. The example utilizes a steel superstructure, where the amount of 
material available for the design is estimated based on the statistics of 
existing truss and arch bridges [39] as a function of the span and road 
surface area. Assuming a 200m span arch bridge, the corresponding 
weight of the steel in the superstructure is 7.8kN/m2 of road surface. For 
a two-lane bridge, assuming 10m roadway width, 200m3 of steel would 
be available for the optimization. A deck thickness of 0.2m is assumed in 
computing the lumped masses of the deck. A loading system target 
frequency of 5 Hz (i.e., the bandwidth over which the Padé approxi
mation is accurate) was selected here after confirming the use of higher 
target frequencies produced nearly identical results. A full list of loading 
and structural parameters selected for the studies in this section are 
listed in Table 1. 

Before demonstrating the topology optimization behavior, two pre
liminary studies are presented. Section 4.1 verifies the effectiveness of 
the Guyan reduction for the structural system, including the associated 
sensitivities. Then, Section 4.2 presents a loading system discretization 
refinement study. After confirming the efficacy of the proposed 
approach, optimal topologies for different objectives and traffic pa
rameters are explored. 

4.1. Verification of Guyan reduction 

To validate the adequacy of the proposed Guyan reduction approx
imation, a preliminary optimization was performed on a coarse mesh 
model of 100x50 elements to generate a representative topology. Then, 
the Hankel singular values [44] were computed and for both the full and 

Table 1 
Parameters considered in the example.  

Structural Parameters 

Span L 200m 
Height H L/2 = 100 m 
Floobeam spacing L/10 = 20m 
Elastic modulus E0 200e9 Pa 
Superstructure mass density ρ0 7850kg/m3 

Poisson’s Ratio ν 0.3 
Rayleigh Damping (1st & 3rd Mode) ζ 1% 
Deck mass density ρdeck 2400kg/m3 

Superstructure weight 7.8kN/m2 

Deck width 11.4m 
Road width 10m 
Deck thickness 0.2m 

Loading Parameters 

Loading system frequency target 5 Hz 
Loading discretization Δx L/512 
Vehicle Arrival Rate (per lane) λ 1 load/s 
Mean load magnitude μA 89.0kN 
Variance of load magnitude σ2

A 659.5kN2 

Load magnitude range Amax − Amin 89.0kN 
Load velocity v 26.0m/s 
Mean load (per lane) μAλ/v 3.4kN/m 
Lanes 2(in opposite directions) 

Optimization Parameters 

Mesh 200× 100 
Element size 1 m× 1 m 
Volume fraction 0.2 
Penalty (p, q) (1.25 : 0.25 : 4.00,1.0)
Filter radius 2 m  
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Guyan reduced structural systems of this topology, these are compared 
in Fig. 5. The reduced model has two retained degrees of freedom at each 
of the 11 floorbeam nodes, resulting in a system with a total of 44 sin
gular values. The good agreement in the first 20 high energy states 

between the full and reduced systems confirms that the input–output 
behavior is retained in the reduction process. Evaluating the objective 
function, Jμkσ = Jsom(z) + 3Jsosd(z), using the full and the Guyan reduced 
systems produces results with only 0.002% difference. As a validation of 

Fig. 5. Left: plot of Hankel singular values of the full and reduced structural systems, right: topology with retained degrees of freedom indicated.  

Fig. 6. Comparison of sensitivities computed using full matrices (left) and Guyan reduced matrices (right). Maximum difference between the two is 1.7e-6 (Note that 
the sensitivity of the corner elements, near the boundary condition, is 30 times higher than the adjacent elements, the color scale used here is adjusted to highlight the 
range of the majority of the domain.). 

Fig. 7. Loading system discretization refinement study.  

Fig. 8. Optimal topology for various objective functions.  
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the sensitivity calculation, the adjoint sensitivity for the same objective 
function is computed with and without Guyan reduction and compared 
in Fig. 6. These results indicate that the Guyan reduction is an effective 
tool for reducing the computational burden in topology optimization. 

4.2. Loading discretization refinement 

As discussed in [30] and Section 2, the refinement of the loading 
discretization affects the accuracy of the stochastic dynamic responses 
computed using Eq. (6). To ensure an adequate discretization, loading 
system models with successively finer discretizations are generated 
using the proposed compounding method and used for the separate to
pology optimizations. The resulting topologies optimized for the sum of 
standard deviation objective function using different loading system 
discretizations are shown in Fig. 7. The topology resulting from 256 and 
512 loading discretization points is nearly identical, indicating conver
gence. Note that the compounding method for generating the loading 
systems discussed in Section 2.3 was required to achieve the finer dis
cretizations used here. The remainder of this example utilizes a loading 
system discretization of 512 points. 

4.3. Parametric study of optimal bridge topologies 

Having validated the use of the Guyan reduction and the loading 
system discretization, the proposed topology optimization method is 

now used to study several model parameters. First, the topology 
resulting from different levels of specified probabilistic responses are 
compared; then, the effects of various traffic parameters on the optimal 
topology are investigated. 

As the intent of this work is to enable optimization with respect to 
different levels of the probabilistic responses, a study comparing the 
influence of the k in the Jμkσ objective function is performed. Using the 
parameters shown in Table 1, the optimal topologies for the objectives 
Jsom, Jμkσ with k ∈ [0.1,1, 3,10] along with Jsosd are generated. The 
resulting topologies are compared in Fig. 8, which shows that an in
crease in k tends to reallocate material from the main arch to the diag
onal braces. This distribution of material can be interpreted as the main 
arch reducing the mean response, and the diagonal braces reducing the 
irregularity of response. Therefore, a higher value of k places more 
emphasis on the uniformity of response, resulting in a more inter
connected structure. 

To compare the stochastic responses achieved by each of these so
lutions, Fig. 9 plots the mean displacement along with a shaded region 
representing one standard deviation above and below the mean at the 
floorbeam nodes. Note that the Jsom topology shows the lowest mean 
response, but also has the highest variability; this high variability is the 
result of a lack of bracing between the vertical hangers, which also has 
been observed in Beghini et. al.[45]. Fig. 10 presents these results as a 
Pareto optimal front in terms of minimizing mean Jsom and the variance 
of displacement Jsosd, which indicates that considering a small portion of 

Fig. 9. Comparison of floorbeam displacement for topologies from various objective functions.  

Fig. 10. Pareto-Optimal front between minimizing mean and variance of displacement.  
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the stochastic variability of the response in the objective function sub
stantially improves the total response at only a small cost to the mean 
response. 

Next, the effect of the traffic parameters, v (the speed of the vehicles) 
and arrival rate λ (number of vehicles entering the bridge in a given 
time), are investigated. Both parameters play a role in the static mean 
and stochastic dynamic load components, however, in different ways. 
The moving load speed in the complex exponential of the stochastic 
dynamic load, Eq. (7), affects the loading system filter, while the arrival 
rate only affects the PSD magnitude. As a result, changes in the speed 
affect the topology optimized for just the stochastic dynamic component 
of loading, while changes in the arrival rate do not. Optimal topologies 
for the Jsosd objective at different speeds are shown in Fig. 11. While the 
arrangement of diagonal members is slightly different for different 
speeds, the overall trends of interconnected hangers are very similar. 
Both the speed and arrival rate affect the magnitude of mean loading, 
but it is always a uniformly distributed load, so optimizing for the mean 
load effect at any speed or arrival rate will produce the same topology. 

In contrast, when considering the Jμkσ objective function (i.e., the 
total response as a combination of mean and standard deviation), the 
different magnitudes of these two components result in different to
pologies, as shown in Fig. 12. If the arrival rate is held constant, an in
crease in speed results in fewer loads on the span at any instant in time, 
which can be interpreted as more irregularity in the loading. The 
resulting topology tends to shift material from the main arch toward 
more diagonal bracing components for higher speed traffic, as seen 
when comparing Fig. 12b and 12h. Generally, the optimal topologies for 
different vehicle speeds are relatively similar, indicating a somewhat 
robust solution. A similar effect is seen when holding the vehicle speed 
constant and changing the arrival rate. As the arrival rate increases, 
more loads are on the span at any given time, resulting in a slightly more 
uniform load, and fewer diagonals in the topology. Likewise, a lower 
arrival rate implies fewer loads on the span at a given time, which results 
in slightly more diagonal components in the optimal topology as seen 
when comparing Fig. 12a and 12c. Fig. 12 also compares the 

performance of multiple topologies when evaluated at non-optimal 
speeds and arrival rates, and generally, their performance is within 
about 10% of the optimal topology, indicating a robustness of the 
optimal design, that good performance is achieved, even for loading 
other than that considered in the optimization. 

In summary, lower arrival rates or higher traffic speeds result in 
structures with more interconnected hangers, as opposed to higher 
arrival rates and lower traffic speeds which allocate more material to the 
main arch. 

5. Conclusions 

This paper presented an approach for topology optimization of 
bridge structures subjected to random moving traffic loads. This 
approach resolves the computational barriers with the continuous 
filtered white noise representation of traffic loading developed by 
Golecki et. al. [30], and implements a stochastic topology optimization 
objective function that enables direct minimization of response ex
tremes, which represents the probabilistic design intent to achieve 
adequate levels of performance under the loading uncertainties in 
typical bridges. A new compact loading system formulation referred to 
here as the compounding method is proposed which enables the gen
eration and balanced reduction of loading systems large enough to show 
convergence of topology with further refinement. The topology opti
mization framework is achieved using an adjoint formulation to 
compute the gradients of the objective function, which considers both 
the sum of nodal response means and standard deviations at node lo
cations that correspond to points where the bridge floor system is sup
ported by the superstructure. This new probabilistic objective function 
enables determining a reliability-based optimal topology by represent
ing the probabilistic design intent of targeting the upper tail of the 
random traffic loading. 

Results show that accounting for the randomness of traffic can 
significantly improve the total response compared to optimizing for just 
the mean load, as is common in the literature. Because the static mean 

Fig. 11. Optimal topologies for Jsosd at different vehicle speeds.  

Fig. 12. Left: Optimal topologies for Jμkσ with k = 1 for different speeds and arrival rates, right: comparison of performance of each topology at v = 26m/s and λ =

1.0, dotted line indicates combinations of mean and standard deviation with equivalent objective to topology e. 
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load is a constant and uniformly distributed load, determining the 
optimal configuration is an established benchmark problem [46,47]. 
However, a topology optimized for the mean performs poorly in terms of 
the stochastic dynamic responses, because of the lack of bracing be
tween vertical hangers. When the optimization objective is given in 
terms of the extreme responses (i.e., as a combination of the mean and 
some multiple of the standard deviation of responses), small changes in 
the topology result in substantial improvements in the variability of the 
stochastic bridge response at a small cost to the mean response. Addi
tionally, the optimal topology is dependent on the traffic speed and 
arrival rate, with lower speeds and higher arrival rates resulting in more 
material in the diagonals and hangers. However, even with these de
pendencies, the performance achieved by the structure optimized for 
stochastic moving loads, when evaluated for non-optimal loading pa
rameters is still very good, indicating a robust solution. 

The novelty of this research lies in the fact that the stochastic dy
namic nature of traffic loading can be incorporated into a topology 
optimization framework to yield optimal bridge structures. This 
approach is enabled by the new compact formulation of the continuous 
representation of random traffic loading, combined with the proposed 
objective function that minimizes the extreme structural response, 
paralleling the reliability-based design intention that targets the upper 
tail of the probabilistic responses. 
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Appendix A. – Efficient loading system generation 

This appendix describes the implementation of the compounding method of system assembly discussed in Section 2.3. For a given domain, a spatial 
discretization of loading, Δx, and a velocity, v, are used to compute the time delays needed in the assembled loading system. The input to the 
assembled system is a white noise, and the first output is a delayed version of that input, where the time delay is equal to the time required to travel the 
distance Δx at velocity v. Each additional output extends this delay by an additional Δx/v, corresponding to the remaining discrete locations along the 
span. The first step in generating the compact form of the assembled loading system is creating a base system, d2, which accounts for the first two 
sequential delays. The subsystems with the first two incremental delays are assembled in parallel using Eq. (8) where d(Δx/v) represents a single- 
input, single-output (SISO) state space system of a time delay of Δx/v generated as a Padé approximant. The corresponding block diagram is 
shown in Fig. 2. For the first compounding iteration, i = 1 in Eq. (9), the assembly consists of the base system in parallel with a delayed base system, 
where the delayed base system is represented as a series combination of a SISO delay system and the base system. The result is four outputs with 
sequentially increasing delays given by 

d4 =

⎡
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⎢
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⎢
⎢
⎣
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⎣
d(Δx/v)
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⎣
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⎥
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where * represents the series combination of two systems. The corresponding block diagram is shown in Fig. 13. 
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Fig. 13. Block diagram of assembled loading system, d4, with four outputs (outputs are labeled with their time delay).  

For the second compounding iteration, i = 2 in Eq. (9), the procedure is repeated. The result is eight outputs with sequentially increasing delays. 
The corresponding block diagram is shown in Fig. 14.
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( )

( )

( )
( )

( )

( )

( )

( )
( )

( )

( )

Fig. 14. Block diagram of assembled loading system, d8, with eight outputs (outputs are labeled with their time delay).  

This assembly procedure is repeated as many times as necessary to generate the required number and timing of output delays. 
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