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ABSTRACT The Internet of Things (IoT) is a technological paradigm involved in a diversity of domains
with favorable impacts on people’s daily lives and the development of industry and cities. Nowadays,
one of the most critical challenges is developing software for IoT systems since the traditional Software
Engineeringmethodologies and tools are unproductive in the face of the complex requirements resulting from
the highly distributed, heterogeneous, and dynamic scenarios in which these systems operate. Model-Driven
Engineering (MDE) emerges as an appropriate approach to abstract the complexity of IoT systems. However,
there are no domain-specific languages (DSLs) aligned to standardized reference architectures for IoT.
Furthermore, existing DSLs have an incomplete language to represent the IoT entities that may be needed at
the edge, fog, and cloud layers to monitor IoT environments. Therefore, this paper proposes a domain-
specific language named Monitor-IoT, which supports developers in designing multi-layer monitoring
architectures for IoT systems with high abstraction, expressiveness, and flexibility. Monitor-IoT consists
of a high-level visual modeling language and a metamodel aligned with the ISO/IEC 30141:2018 reference
architecture. In addition, it provides a language capable of modeling architectures with a wide variety of
digital entities and dataflows (synchronous and asynchronous) between them across the edge, fog, and cloud
layers to support the monitoring of a diversity of IoT scenarios. The empirical evaluation of Monitor-IoT
through the application of an experiment, which contemplates the use of the Technology Acceptance Model
(TAM), demonstrates the intention of the participants to use this tool in the future since they consider it easy
to use and useful.

INDEX TERMS Architecture, domain-specific language (DSL), Internet of Things (IoT), metamodel,
model-driven engineering (MDE), monitoring.

I. INTRODUCTION
The Internet of Things (IoT) is a technological paradigm that
has evolved dramatically in recent years. Its growth has been
stimulated by the great variety of intelligent objects (things)
that are being interconnected through the Internet to provide
services to users across a broad spectrum of application
domains (e.g., home, health, education, industry, transporta-
tion) [1], [2]. According to Gartner [3], the total number of
IoT devices installed in 2017 (8.4 billion) already exceeded
the total population of human beings; furthermore, a forecast
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by the International Data Corporation (IDC) [4] estimates that
there will be 41.6 billion IoT devices in 2025.

Currently, one of the most critical challenges for the sci-
entific community and the industry is the development of
software for IoT systems because traditional Software Engi-
neering methodologies and tools are mainly focused on the
implementation domain (programming to low level) instead
of the problem domain [5]. In addition, those solutions have
proven to be not very productive in the face of the intrinsic
characteristics of IoT systems [6], such as i) heterogeneity,
made up of a set of physical devices, each one with different
programming interfaces (APIs), operating systems, com-
puting capabilities, communication protocols (e.g., CoAP,
MQTT, HTTP), and data exchange standards (e.g., XML,
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JSON, RDF); ii) distributed computing, comprises a set of
computing nodes, located on the edge, fog, or cloud to achieve
a balance in the use of resources; iii) scalability, requir-
ing the transparent expansion of its infrastructure, discover-
ing and incorporating new devices or services in real-time;
and iv) uncertainty, operate in highly changeable scenarios,
making it impossible to identify all the requirements in the
development stages of an IoT system [7].

Therefore, there is a need to create formal Software Engi-
neering methods and tools adapted to the specificities of IoT
systems, which simplify and speed up their development with
a high level of abstraction, flexibility, and extensibility [6].
Model-Driven Engineering (MDE) emerges as a promis-
ing software development approach to bridge the problem-
implementation gap and consequently abstract the complex
and dynamic aspects of the new generation of systems
(e.g., IoT) and their environment [8], [9]. Specifically,
to address the complexity of these systems, MDE focuses on
developing technologies that combine domain-specific lan-
guages (DSLs), transformation engines, and generators [9].

There are several proposals on DSLs oriented to the IoT
domain [10]–[19]. However, they are not based on a globally
accepted metamodel or aligned with a standardized reference
architecture for IoT (e.g., ISO/IEC 30141:2018 [20]). In turn,
these DSLs have a language made up of a reduced set of
digital entities and dataflows (interactions) between them at
the edge, fog, and cloud layers; this limits the representation
of the possible variants of monitoring processes that may be
required, which depend on the hardware capabilities of the
devices, microcontrollers, and servers, as well as the net-
work bandwidth and data volume, among the most important.
According to Mineraud et al. [21], one of the research gaps
in IoT is the absence of DSLs that offer functional primitives
to describe the problem and the solution space with a high
level of abstraction (e.g., primitives to manage dataflows
catalogs or data fusion and aggregation operations), in order
to simplify the development of IoT applications.

This study is a first step towards developing a methodolog-
ical approach and a set of tools based on MDE [8] and the
MAPE-K feedback loop [22] to build self-aware and self-
adaptive IoT systems. That is, systems capable of obtaining
metrics to autonomously evaluate the current state and pos-
sible future evolution of themselves and their environment
and, based on this knowledge, act if necessary (e.g., explain,
report, suggest, self-adapt). The MAPE-K loop consists of
four stages: i) monitor or collect data on the state of the
system and its environment; ii) analyze the data collected
to assess the situation and detect any anomaly or problem;
iii) plan how to adapt the system to solve a detected problem;
and iv) execute the adaptation plan based on knowledge of
the system and its environment [22].

In this context, the scope of this paper is the monitoring
stage of the MAPE-K. Hence, a domain-specific language
named Monitor-IoT is proposed to design IoT system archi-
tectures that support monitoring through the edge, fog, and
cloud layers. Monitor-IoT DSL is mainly oriented to IoT

applications that are characterized by requiring an infras-
tructure that efficiently integrates various resources from the
edge, fog, and cloud layers in order to collect, transport,
process, and store data at different levels of aggregation for
later analysis, unlike other IoT applications that are limited
only to reacting from the data collected at that time.

Monitor-IoT provides a graphical designer (high-level
visual language) built in the Obeo Designer Community and
Eclipse Sirius tools [23] to support developers in modeling
IoT multi-layer monitoring architectures with a high level
of abstraction, expressiveness, and flexibility. Thus, devel-
opers are freed from implementation details, facilitating and
speeding up the development tasks. Furthermore, Monitor-
IoT is based on a metamodel specified in Ecore [24] and
aligned with the reference architecture for IoT ISO/IEC
30141:2018 [20] that provides a language to mainly sup-
port: i) the definition of entities (physical or digital) to be
monitored; ii) the definition of digital entities (computing
nodes and their resources) that support the monitoring pro-
cesses (data collection, transport, processing, and storage) at
the edge, fog, and cloud layers; iii) the specification of the
properties to be monitored for each entity; iv) the definition
of dataflows between digital entities, based on synchronous
or asynchronous communication; and v) the establishment of
aggregation operations for the collected data.

It should be emphasized that although Monitor-IoT is
oriented in the first instance to the design of architectures
that support the monitoring processes of IoT systems, the
proposed metamodel is highly flexible and extensible. The
expansion and validation of Monitor-IoT to support other
types of processes (e.g., analysis, generation of reports for
decision-making, actuation) will be addressed in future work
since the final purpose is to build a DSL that covers all the
stages of the MAPE-K.

The structure of this paper is as follows: Section 2 presents
a brief overview of the main concepts addressed in this
study and a review and comparative analysis of related work.
Section 3 describes the Monitor-IoT DSL. Section 4 explains
the proposed process to design monitoring architectures for
IoT systems with Monitor-IoT. Section 5 provides an illus-
trative example to demonstrate the usefulness ofMonitor-IoT.
Section 6 describes the empirical evaluation of Monitor-IoT.
Finally, Section 7 presents the conclusions and lines of future
work.

II. BACKGROUND AND RELATED WORK
The term IoT refers to a global infrastructure made up
of a set of ubiquitous intelligent objects interconnected
by information and communication technologies to collect,
store, process, and analyze data from the physical and vir-
tual world and react with the minimum human intervention
[7], [25], [26].

An IoT infrastructure includes: i) devices to collect
data (monitoring) or perform an action on the environment
(actuation), which can be standard or specialized objects.
These objects can be carried by people, be located in homes,
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form part of the infrastructure of a city, or be integrated
into the equipment of a factory; ii) gateways to securely
interconnect the devices with the cloud, controlling the
exchange of data between them; and iii) cloud to store,
process, and analyze data in real-time or in batches in
order to obtain knowledge and respond to changes in the
environment [27], [28].

Additionally, due to the exponential growth of IoT devices
and data generated [4], a solution based solely on the cloud
may be impractical for some IoT scenarios. Therefore, an IoT
infrastructure may require solutions that decentralize applica-
tions, management, and data analysis to solve performance
problems, network congestion, security, reliability, among
others. In this sense, as a complement to cloud computing,
two solutions or technological paradigms have been pro-
posed: edge computing and fog computing. Edge computing
is the peripheral network layer, also known as proximity net-
work or IoT network, encompassing the IoT devices (sensors,
actuators) and other devices (IoT gateways) to which the IoT
devices connect to access local or wide area networks. Its
purpose is to provide local storage and processing capabilities
to these devices to react immediately without transferring
the data to another location. In comparison, fog computing
comprises a set of decentralized computing nodes located
in local or wide area networks (before the cloud) that act
as mediating instances between the cloud and the devices
located at the network edge (sensors, actuators, IoT gate-
ways). Fog computing decouples the hardware and software
functions from the cloud, allowing dynamic reconfigurations
of what data are stored and processed in the fog nodes and
what data are prepared and sent to the cloud for storage and
further analysis. Therefore, fog computing is hierarchical,
running different IoT applications that process data from a
large number and diversity of devices, unlike edge comput-
ing, which runs specific IoT applications for a small number
of devices [29].

Consequently, IoT takes advantage of a large part of
existing and emerging technologies, combining them to cre-
ate new products and services, and ultimately improve the
user experience. Among the IoT-enabled technologies are:
communication networking technologies, sensing/control
technologies, device/hardware technologies, and software
technologies [1], [2].

Model-Driven Engineering (MDE) is a software develop-
ment approach in which domain models are created and sys-
tematically transformed into concrete implementations [8].
Therefore, MDE increases the importance of models since
they are used for documentation and communication, and as
central artifacts of the software development process. Fur-
thermore, models raise the abstraction level and automation
of the development process, which favors the management
of software complexity and change, and improves several of
the quality attributes of software (for example, productivity,
maintainability, flexibility) [30].

The fundamental elements of MDE are: i) model,
abstract representation of an aspect of a software system;

ii) domain-specific language (DSL), a language with a con-
crete syntax (notation), abstract syntax (metamodel), and spe-
cialized semantics to create models in a specific domain; iii)
metamodel, a conceptual model of a DSL that defines the con-
cepts of language and the relationships between them, as well
as the rules that establish when a model is well-formed; and
iv) model transformations, to achieve the automation of the
models, through their translation into code [31].

The following subsections present a bibliographic review
of the main proposals of reference architecture models, meta-
models, and DSLs existing in the literature for the IoT
domain. In addition, a comparative analysis between different
DSL proposals and this work (Monitor-IoT) is included.

A. REFERENCE ARCHITECTURE MODELS FOR IoT
ISO/IEC 30141:2018 [20] provides a standardized IoT refer-
ence architecture, which includes a generic conceptual model
that describes the concepts of the common entities of an
IoT system and their relationships. The conceptual model
is derived into a high-level reference model, broken down
into five architectural views: functional, system, informa-
tion, communication, and usage. In turn, Bauer et al. [32]
propose an IoT Architectural Reference Model (IoT ARM)
based on five submodels: i) domain [33], includes the main
IoT concepts (e.g., physical entities, virtual entities, devices,
resources, services) and the relationships between these;
ii) information, defines the structure of information related
to IoT; iii) functional, identifies groups of functionalities of
an IoT system; iv) communication for heterogeneous IoT
environments; and v) trust, security, and privacy for IoT.
In the same way, Patel et al. [34], [35] present a methodology
that separates the development of IoT applications into four
concerns: domain, functional, implementation, and platform,
which are represented in a conceptual model.

B. METAMODELS AND DSLs FOR IoT
Concerning metamodels and DSLs for the IoT domain, the
most relevant proposals are described and analyzed below:

1) Eterovic et al. [10] focus on creating an IoT systems
development language powerful enough for profession-
als and understandable enough for end-users that pro-
vide the requirements. Hence, they propose a Visual
Domain-Specific Modeling Language (VDSML) for
IoT using a stereotype-basedUML profile. TheVDSML
allows the modeling of real and virtual things, which
can contain a virtual collection of items, such as inputs
(sensors), outputs (actuators), and software components.
One limitation is the low specialization of the language,
requiring more specific stereotypes to represent edge,
fog, or cloud nodes, as well as software components,
such as middleware, services, applications, or databases.
Additionally, a usability test was used to validate the
VDSML by calculating the SUS (System Usability
Scale) score, task success rate, time on task, and user
error rate.
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2) Salihbegovic et al. [11] propose DSL-4-IoT to tackle
the complexity and heterogeneity of IoT systems. This
is a VDSML to design the structure of an IoT system
using hierarchical blocks (system, subsystem, devices,
device channels) mainly focused on the edge layer. The
blocks can be saved in libraries to support reusability
and scalability. The configuration files generated on
the DSL-4-IoT run on the OpenHAB runtime engine.
In turn, to demonstrate the viability and usability of the
solution, an IoT testbed was implemented, spanning a
variety of static and mobile sensors in two application
domains (smart home and remote patient monitoring).

3) ThingML [12] includes a modeling language, a method-
ology, and tools to support multiplatform code gener-
ation for distributed reactive systems. The ThingML
language comprises two structures: i) Things that rep-
resent software components; and ii) Configurations that
describe their interconnection. Software components
can include properties, functions, messages, ports, and
state machines. However, ThingML does not allowmod-
eling the nodes on which the software components run
at the edge, fog, and cloud layers. Several case studies,
combining various implementation platforms, were car-
ried out to evaluate ThingML.

4) Pramudianto et al. [13] present an architecture for devel-
oping IoT prototypes, separating domain modeling from
technological implementations. Using a model-driven
tool called IoTLink, domain experts can create domain
models, composing virtual objects linked to implemen-
tation technologies (sensors, actuators) to abstract their
complexities and specificities. IoTLink generates arti-
facts in Java from the defined model. As with ThingML,
a disadvantage of IoTLink is that it does not cover mod-
eling of the compute nodes onwhich Java artifacts reside
and run. Finally, IoTLink was evaluated against classical
Java development using a controlled experiment in terms
of development time and user satisfaction.

5) Negash et al. [14] introduce a flexible and scalable
approach that enhances programmability and modifia-
bility in the perception layer of an IoT system, especially
in resource-constrained devices. The approach uses a
domain-specific language (DoS-IL) with a textual nota-
tion to write lightweight scripts and store them in a gate-
way. In turn, the scripts are requested and executed by
the perception layer devices using an embedded resource
browser that integrates a DoS-IL interpreter and manip-
ulates a Device Object Model (DOM). However, this
proposal does not present an empirical evaluation.

6) Costa et al. [15] propose a DSL (SoaML4IoT) to design
SOA-based IoT systems. The DSL extends the Service
Oriented Architecture Modeling Language (SoaML)
with specific concepts of the IoT domain. The edge
nodes are represented in a general way, requir-
ing specialization in sensors, actuators, tags, or IoT
gateways (controllers). Instead of an empirical evalua-
tion, a comparative analysis with other DSL proposals

was performed to determine the level of expressivity of
SoaML4IoT.

7) Alulema et al. [16] present a model-driven approach that
includes a DSL, a graphical editor, and a Model to Text
(M2T) transformation to generate the code for IoT nodes
containing controllers, sensors, and actuators. Conse-
quently, this solution only targets the edge layer of an
IoT platform. In turn, the authors designed a smart home
scenario to demonstrate the functionality and feasibility
of the proposed approach.

8) C. G. Garcia et al. [17] propose a graphical
DSL (MOCSL) aimed at people without programming
knowledge in order to facilitate the creation of native
applications for smart objects interconnected through
the IoTMidgar platform.WithMOCSL, users can create
the necessary logic for their objects by only selecting
the sensors and actuators they want to use on their
smartphone or Arduino. Therefore, MOCSL also only
focuses on the edge layer of an IoT platform. In addition,
to validate the usefulness and efficiency of the solution,
the authors carried out an experiment in which two
profiles of participants with different levels of knowl-
edge about smart objects had to create a basic Arduino
application using MOCSL and another graphical editor.

9) Barriga et al. [18] have built a DSL (SimulateIoT) to
design, code, and deploy IoT system simulations. The
solution comprises a domain metamodel, a graphical
concrete syntax, and model-to-text transformation algo-
rithms. The IoT simulation model created in the graph-
ical editor can include sensors, actuators, fog nodes,
cloud nodes, databases, and complex event processing
engines. However, these elements can only be connected
using asynchronous communication protocols (publish-
subscribe). The solution was implemented in two case
studies of IoT environments (smart building and agricul-
ture) to demonstrate the expressiveness of the solution
through the opinion and impression of the authors, sug-
gesting a need for the use of more rigorous techniques
(based on statistics) to test the end-user perception.

10) Alfonso et al. [19] propose a DSL to model the static
and dynamic aspects of an IoT deployment. The DSL
includes an MPS projectional editor with textual, tab-
ular, and tree view notation. Furthermore, the solution
comprises a prototype Kubernetes manifest generator
to deploy the modeled IoT systems. This work only
provides a proof of concept of the code generator pro-
totype. Therefore, as with the previous proposal, a more
rigorous empirical evaluation is required to validate the
usability and usefulness of the DSL concerning the
end-user.

C. COMPARATIVE ANALYSIS
Based on this bibliographic review, there are important
advances in the field of DSLs for IoT, whose common
denominator has been abstracting the complexity and het-
erogeneity of IoT systems to speed up their development.
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However, several limitations have been identified in the
related work. Tables 1 and 2 present a comparative analysis
between the DSLs studied and Monitor-IoT. The main limi-
tations and challenges encountered and that are addressed in
this paper through Monitor-IoT are discussed below:
1) Although some proposals on DSLs [13], [14]

are based on the IoT Architectural Reference

Model (IoT ARM) [32], there is no globally accepted
metamodel. Ambiguities have even been observed
between the solutions studied regarding the mean-
ing and use of various IoT terms and concepts,
the lack of consensus being an open problem.
Furthermore, the proposed DSLs are not based
on a metamodel aligned with the standardized

TABLE 1. Comparative analysis between the DSLs studied and Monitor-IoT. (Part 1: Capacity of specification and modeling of entities, resources,
properties, and dataflows.)

TABLE 2. Comparative analysis between the DSLs studied and Monitor-IoT. (Part 2: Standardization, visual modeling language, methodology, and
empirical evaluation.)
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reference architecture for IoT ISO/IEC 30141:2018 (see
Table 2).

2) The proposals studied are based on metamodels with
a limited language to represent the key concepts that
may be required for monitoring an IoT system, such
as physical entities, digital entities (computing nodes
and their resources), communication networks and pro-
tocols, entity properties, and dataflows between entities.
Table 1 shows in detail that, unlike Monitor-IoT, the
analyzed DSLs cannot specify or model all the key
concepts mentioned.

3) Regarding physical entities, three proposals [10], [13],
[15] include the possibility of representing any physical
entity in their metamodels. In turn, the proposal by
Alfonso et al. [19] allows representing only the regions
or places to monitor in an IoT scenario.

4) Most of the DSLs studied focus on the edge layer of
an IoT infrastructure, allowing the specification of sen-
sors, actuators, tags, and to a lesser extent, IoT gate-
ways located in the proximity network. On the con-
trary, there are only three studies [15], [18], [19] that
support the modeling of fog and cloud nodes in their
metamodels.

5) Some proposals represent the software and hardware
resources used by edge, fog, and cloud nodes through
generic concepts in their metamodels. However, this
limits the possibility of specifying in detail the attributes
and configurations of the essential resources to monitor
and control IoT scenarios (APIs, applications, services,
databases, middlewares, brokers, network interface),
requiring a specialization of these resources in the
metamodels. In turn, although other proposals focus
on specialization, they do not represent all the essen-
tial resources mentioned. Therefore, metamodels that
combine these two approaches are required, including a
specialization/generalization relationship between sub-
classes to define in detail the essential resources of an
IoT system and a concrete superclass to represent any
other hardware or software resource (e.g., CPU, RAM,
Battery).

6) In particular, the studied solutions and their metamod-
els have limitations in representing the software or
data resources used by a typical IoT monitoring sce-
nario. Thus, only two proposals [13], [18] consider the
database concept in their metamodels; however, these
proposals do not allow modeling the logical storage
structure of the database (tables and columns). In turn,
only one study [13] allows specifying aggregation and
merger operations on the monitored data. Also, several
metamodels do not allow specifying the compute nodes
on which the resources reside or run. For example,
although two proposals [18], [19] contemplate using
topics to support asynchronous communication, they
do not incorporate the broker concept to represent the
resource in which those topics are managed. Another
limitation is that the solutions assume that a sensor can

only collect data for a single property, unlike reality,
where there are sensors that can collect data for multiple
properties (e.g., the DHT11 sensor collects temperature
and humidity) [18].

7) A group of DSLs [12]–[15] explicitly include the prop-
erty concept in their metamodels to characterize certain
types of IoT entities. However, it is necessary to delve
into this aspect in order to propose metamodels with an
extensible structure capable of supporting the specifi-
cation of various types of properties (telemetry, state,
and metadata) for any IoT entity, whether physical or
digital (computing nodes and resources), depending on
the needs of each IoT scenario. In this sense, telemetry
properties have information about a physical entity col-
lected from sensors (e.g., temperature in a room, blood
pressure of a patient); state properties contain informa-
tion that describes the current status of a digital entity
(e.g., battery power level of a sensor, amount of memory
or processing used by an edge node, bandwidth used by
a network); and metadata, which have information that
rarely changes and that is known at design time (e.g.,
serial number, brand, model).

8) Since an IoT system can have many entities of the same
type, metamodels must also support generic structures
(e.g., property templates per entity category) to allow
common properties between entities to be specified only
once. However, this is an aspect that is not considered
by the related work. Another aspect not covered is map-
ping the properties to be monitored both with the APIs
responsible for collecting the data and with the storage
structures (database, tables, columns) where said data
are stored.

9) The proposals [10], [13], [16], [18] that support the
modeling of dataflows do not cover the diversity of
possibilities of communication links and data exchange
between digital entities (APIs, applications, services,
databases, middlewares, brokers) that the IoT scenar-
ios may require across the edge, fog, and cloud lay-
ers. Depending on the hardware capabilities of the IoT
devices, the network bandwidth, and the data volume,
different types of digital entities and communication
configurations between them may be needed to support
the motorization of an IoT environment. From direct
communications between the IoT devices (sensors) and
the cloud nodes to including intermediate nodes located
on edge (IoT gateway) or fog layers, responsible for
carrying out the routing, processing (merging, aggrega-
tion), and data storage operations. Also, synchronous or
asynchronous communications between digital entities
may be required. Therefore, one of the challenges is
to propose sufficiently flexible and extensible DSLs to
allow graphical modeling (with a high degree of abstrac-
tion) of dataflows as a sequential set of various types
of communication links between digital entities. In turn,
it must be possible that the types of links between digital
entities can be combined and ordered in different ways
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to form dataflows according to the needs of each IoT
scenario.

10) On the other hand, only three proposals [12], [13], [18]
(see Table 2) have included as part of their solution the
definition of a methodological process that guides the
tasks of specification, modeling, and implementation of
IoT solutions with the support of the proposed DSL
tool. In this sense, it is desirable to have a method-
ological process associated with a DSL tool to ensure
that end-users can use it in a disciplined, efficient, and
effective manner.

11) Finally, although most of the DSLs studied have a visual
modeling language (graphical concrete syntax), few
proposals [10], [13], [17] have carried out a rigorous
empirical evaluation based on the end-user perception
to validate the ease of use and usefulness of the DSL
tool (see Table 2). However, these proposals focus only
on the edge layer or have a limited modeling language.
On the contrary, those proposals that focus on the edge,
fog, and cloud layers [15], [18], [19] do not include
an empirical evaluation or have only validated their
solutions based on the opinion and impression of their
authors.

III. MONITOR-IoT DSL
First, the Monitor-IoT metamodel (abstract syntax) is
described, including a review of the main metaclasses
and their relationships (subsection A). Then, the Monitor-
IoT graphical designer (concrete syntax) is presented
(subsection B).

A. MONITOR-IoT METAMODEL
The Monitor-IoT metamodel was built from the reference
architecture for IoT ISO/IEC 30141:2018. This architec-
ture includes a generic and abstract conceptual model that
describes the concepts of the key entities (physical and digi-
tal) and their relationships within a typical IoT system [20].
Hence, the key entities and relationships of this conceptual
model were reused to create themetamodel. This reuse (align-
ment) provides the metamodel with a common vocabulary
that can be used unambiguously in any IoT subdomain or
implementation. Specifically, 18 of the 21 concepts contained
in the conceptual model were reused. Most of the reused
concepts (entity, physical entity, digital entity, network, IoT
user, human user, non-human user, IoT device, sensor, tag,
actuator, IoT gateway, application, service, database) have
been represented as metaclasses in the metamodel, except
three concepts (domain, endpoint, identifier) that have been
included as attributes of metaclasses (see Fig. 9 and 10).
Then, based on the analysis of the relatedwork, themost com-
mon entities among the proposals, which also are relevant for
data collection, transport, processing, and storage of an IoT
system, were included in the metamodel. In turn, additional
entities necessary to represent important monitoring aspects
not covered (e.g., dataflows, property templates, database
structure, middlewares, brokers, property mapping with APIs

and database, data aggregation operations) were incorporated
into the metamodel. Finally, it was essential to understand
how entities collaborate during the monitoring processes
of an IoT environment in order to define the relationships
between said entities.

This construction approach has made it possible to ensure
the semantic coherence of the metamodel (alignment with
ISO/IEC 30141:2018) and provide it with a more com-
plete and flexible language capable of modeling a variety of
alternatives for monitoring processes and dataflows in IoT
systems.

Furthermore, Monitor-IoT allows the construction of IoT
monitoring architectures with asynchronous and synchronous
communication between the computing nodes. In the first
case, the sending and receiving of data are temporarily sep-
arated, which is crucial for improving the performance of
large-scale IoT systems. Whereas in the second case, the data
exchange (sending - receiving) is carried out in real-time to
prioritize those requests that require an immediate response.

The Monitor-IoT metamodel has been specified in Ecore,
using the tools included in the Eclipse Modeling Framework
(EMF) [24]. Fig. 1 presents an extract of the metamodel
with the main metaclasses and relationships. In contrast,
Fig. 9, 10, 11, and 12 (shown inAppendixA) contain the com-
plete metamodel, including all metaclasses, relationships,
attributes, and enumerations. The metaclasses included in the
figures are identified with a number enclosed in a circle of
different colors. The red identifies the metaclasses aligned
with ISO/IEC 30141:2018, the blue identifies the metaclasses
selected from the proposals studied (related work), and the
green identifies the additional metaclasses incorporated by
the researchers of this work.

Themost importantMonitor-IoTmetaclasses are described
below, while the remaining metaclasses are detailed in
Appendix.
MonitoringArchitectureModel. Main metaclass that

describes and contains the multi-layer monitoring architec-
ture model of an IoT system (see Fig. 1(1), 9(1), and 11(1)).
IoTSystem. Represents a system composed of a set of

physical (things) and digital entities that interact and coop-
erate in the collection, transmission, processing, and storage
of data from the physical and virtual world, as well as to
act on physical entities from digital instructions, in order
to provide services to end-users in a variety of domains
(e.g., home, health, transportation, industry). The metamodel
enables the representation of IoT ecosystems by reusing the
physical and computational capabilities of individual IoT sys-
tems (subsystems) existing in different domains. This solu-
tion contributes to the provision of smarter emerging services
with efficient use of resources. For example, an emerging
IoT disaster recovery ecosystem can be made up of a trans-
portation system, a health system, and an emergency system
(see Fig. 1(2) and 9(2)).
Entity. A global concept; it represents anything (physical

or digital) with distinctive and independent characteristics
(e.g., places, people, home appliances, electronic devices,
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FIGURE 1. Extract of the Monitor-IoT metamodel with the main metaclasses and relationships.

servers, communication networks, software components).
In some of the proposals studied, it is often called ‘‘entity
of interest’’ to highlight that it is something of user interest to
achieve their objectives (see Fig. 1(4) and 9(4)).
PhysicalEntity. Represents a real-world thing that is mon-

itored by a sensor and/or controlled by an actuator. Physical
entities can be: living organisms, objects, or the environ-
ment (e.g., buildings, people, animals, vehicles, home appli-
ances, articles, clothing, electronic devices). A physical entity
extends to the digital world by incorporating, containing,
or carrying one or more information and communication
technology devices that provide an interface to obtain infor-
mation or act on the physical entity. In addition, a physical
entity can contain other physical entities. For example, a
house can contain rooms, which in turn contain home appli-
ances (see Fig. 1(7) and 9(8)).

DigitalEntity. Represents a computational element (at the
hardware or software level) of an IoT system. These elements
can be: cloud nodes, fog nodes, IoT gateways, IoT devices
(sensors, tags, actuators), middlewares, databases, services,
APIs, applications, network interfaces, among others. There-
fore, digital entities can be specialized in: computing nodes
and hardware or software resources (see Fig. 1(8) and 9(9)).
Property. Defines an attribute that characterizes a partic-

ular physical or digital entity. Properties make it possible to
identify or describe an entity, determine its state at a given
moment, as well as its evolution over time (see Fig. 1(6),
9(7), 10(10), and 11(7)). In turn, the general specifications
of a property are contained in a template using the Proper-
tyTemplate metaclass (see Appendix A).
IoTUser. Represents an actor or beneficiary of an IoT

system that can specialize in: i) HumanUser, a person who
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interacts with an IoT system through one or more appli-
cations that run on user devices (e.g., personal computer,
tablet, smartphone, other specialized devices); and ii) Non-
HumanUser, machine, artifact, or device (e.g., robot, vehicle)
that acts on behalf of human users and can interact with
one or more services offered by an IoT system through a
communication network (see Fig. 1(10-12) and 9(11-13)).
ComputingNode. Represents a digital entity with capabil-

ities to collect, exchange, process, and store data in an IoT
system. Computing nodes can be located on the cloud, fog,
or edge layers. In addition, these nodes can contain hardware
and software resources, such as network interfaces, middle-
ware, brokers, databases, services, APIs, or applications (see
Fig. 1(13), 9(14), and 10(2)).
CloudNode. A centralized computing node with high

capacities to process, analyze, and store the data obtained
directly from the IoT devices or fog and edge intermediate
computing nodes (see Fig. 1(15) and 9(16)).
FogNode. A decentralized computing node that acts as

a mediating instance between the cloud and edge devices
(sensors, actuators, IoT gateways). Fog nodes play the role
of the intermediate layer; they decide what data are stored
and processed in this layer and what data are prepared and
sent to the cloud for storage and subsequent analysis. The
objective of fog nodes is to reduce costs, latency, and data
traffic on the network by implementing data storage and
processing nodes closer to the source, that is, to IoT devices
(see Fig. 1(16) and 9(17)).
EdgeNode. A computing node or device located at the

network edge of an IoT system. Edge nodes can be: IoT
devices (sensors, tags, actuators) or IoT gateways. Therefore,
they can have varied hardware capabilities, being capable
of storing and processing data on the same device, that is,
at the network edge. Furthermore, these nodes can be located
close to or embedded in physical entities to provide them
with detection, processing, storage, or actuation capabilities
(see Fig. 1(17) and 9(18)).
Resource. Represents a software or hardware component

used by the cloud, fog, or edge nodes to detect, collect,
process, and store data on physical entities and act on these
entities based on digital instructions. The resources can
be specialized in: network interfaces, APIs, applications,
middlewares, services, databases, or configuration files (see
Fig. 1(14), 9(15), and 10(1)).
Network. Represents an infrastructure that supports the

communication and exchange of data between a set of dig-
ital entities. The metamodel supports various communica-
tion technologies (e.g., Ethernet, Wi-Fi, Bluetooth, Zigbee,
Ultra-Wideband, RFID) and communication protocols (meta-
class Protocol) to interconnect heterogeneous IoT nodes
with diverse hardware capabilities. Communication proto-
cols, according to their functions, are organized in layers.
For example, at the application layer level, there are several
useful protocols for different IoT scenarios, such as CoAP
(Constrained Application Protocol), MQTT (Message Queue
Telemetry Transport), and HTTP/REST (Hypertext Transfer

Protocol / Representational State Transfer) (see Fig. 1(9, 23),
9(10, 24), and 10(5, 15)).
DataFlow. Represents with a high level of abstraction

the trajectory of the data and how digital entities (nodes
or resources) interact within a process of data collection,
transfer, processing, and storage. In this sense, a dataflow
describes how the raw data collected by IoT devices are trans-
ported through the different computing nodes and resources
until stored (at different levels of aggregation) in the cor-
responding columns and tables of a database. The execu-
tionTimeInterval and flowExecutionTime properties define
the frequency and time of dataflow execution, respectively.
The communication type supported by a dataflow can be:
i) synchronous, uses a request/response model, where the
sending - receiving of data is carried out in real-time between
a source digital entity (client) that makes the request and a
destination digital entity (server) that receives the request;
and ii) asynchronous, uses an event-based data publica-
tion/subscription model, that is, the data sent by the issuing
digital entities (publishers) are published through topics in
an intermediate entity (Broker) so that the receiving digital
entities (subscribers) can read them later. A dataflow com-
prises a set of ordered and interconnected links (Link meta-
class). Each link allows communication and data exchange
between two digital entities. The link types supported by
the metamodel are: API-IoTDevice, App-API, Service-API,
App-Service, App-Broker, Service-Broker, Service-Service,
and Service-Database. The previousLink relationship defines
the order of the links that make up a dataflow. Further-
more, a dataflow contains one or more data mapping rules
(DataMappingRule metaclass) to map data sources (source)
to storage locations (destination) of a dataflow; whereas
links define how the data will be transported between the
source and the destination (traceability). Data mapping rules
can specialize in metaclasses: i) PropertyToDataColumn,
associates an entity property with a table column; and ii)
DataColumnToDataColumn, associates two data columns,
a source column to which aggregation operations are applied,
and its result is stored in a destination column. The diversity
of configurations and combinations of links between digital
entities that a dataflow can support provides flexibility and
extensibility to the metamodel. Thus, in addition to data col-
lection and aggregation flows, the metamodel could support
report generation flows for decision-making and actuation
flows. However, in this paper, only the first two types of
dataflows are evaluated, leaving the others to be addressed
in future work (see Fig. 1(38-42), 10(22-30), and 11(2-8)).

B. MONITOR-IoT GRAPHICAL DESIGNER
Monitor-IoT provides a graphical design tool (high-level
visual modeling language) that simplifies and facilitates the
creation and maintenance of multi-layer monitoring archi-
tecture models for IoT systems conforming to the domain
vocabulary (metamodel) presented in the previous subsec-
tion. The graphical designer has been built in Obeo Designer
Community Edition and Eclipse Sirius [23] to take advantage

VOLUME 10, 2022 61647



L. Erazo-Garzón et al.: Domain-Specific Language for Modeling IoT System Architectures That Support Monitoring

of the modeling technologies included in EMF (EclipseMod-
eling Framework) and GMF (Graphical Modeling Frame-
work). In this way, Monitor-IoT supports creating a modeling
workbench comprising a set of editors (diagrams, tables,
trees) whose structure and behavior are determined by the
metamodel. Fig. 2 shows the graphical notation (concrete
syntax) for each Monitor-IoT metaclass.

Through Monitor-IoT’s visual modeling interface, devel-
opers can create architecture models, providing only high-
level specifications about the digital entities (e.g., sensors,
APIs, applications, services, brokers, databases) and interre-
lationships between these (dataflows) required at the edge,
fog, and cloud layers to support the monitoring processes of
an IoT system; without worrying about how these entities and
dataflows should be implemented or coded at a low level.

In turn, Monitor-IoT creates a serialized monitoring archi-
tecture model in XMI so that a computer can interpret it.
Hence, the specifications included in these models can be
processed by transformation algorithms to automatically gen-
erate the software resources of an IoT system in charge of sup-
porting the monitoring operations (e.g., APIs, applications,
services, brokers, topics, databases).

In particular, the interrelationships (links) between the
digital entities that are part of the dataflows can be used to

automatically generate the code that supports the commu-
nication interfaces and data exchange between the software
resources. For example, a monitoring architecture model may
contain a dataflow that relates to the following digital entities:
i) an API that obtains data from a CO sensor; ii) a software
application on a gateway that receives the data from the
API and sends them through a web service to a fog node;
and iii) a web service that stores the monitored data in a
database of the fog node (see Fig. 5). The specifications of
this dataflow can be used to automatically include, as part of
the programming logic of the gateway application, the code
to call the API of the CO sensor and obtain the monitored
data. Also, the code to consume the web service and transfer
the monitored data to the fog node (synchronous commu-
nication) can be added below. Likewise, in the body of the
web service, the code to store the monitored data and its
metadata in a specific table of the fog node database can be
encapsulated.

This development approach onwhichMonitor-IoT is based
allows developers to focus their efforts on defining the prob-
lem while freeing them from tasks such as coding APIs,
applications, or web services, creating topics in a broker,
or constructing the logical storage structure of a database
(tables and columns).

FIGURE 2. Monitor-IoT DSL graphical notation.
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Consequently, themonitoring architecturemodels obtained
from Monitor-IoT constitute an abstraction layer that acts
as a bridge between the monitoring requirements of an IoT
system and its implementation details. Furthermore, this
abstraction layer represented by models and its alignment
with the ISO/IEC 30141:2018 standard allows Monitor-IoT
to be used in any subdomain and technology platform of
IoT. As the models generated by Monitor-IoT are high-level
domain specifications, the target technology platform can
be quickly changed by implementing new transformation
algorithms; however, the specifications of the IoT monitoring
architecture models remain fixed.

Currently, a transformation engine (synchronizer) is being
implemented in Node.js to automatically create the software
components of the IoT system (e.g., APIs, applications, ser-
vices, brokers, topics, databases) from the monitoring archi-
tecture model. These components allow collecting the data
from sensors, performing aggregation operations on these
data, and storing them in the respective databases. Although
medium-term, the focus will be on an engine capable of
maintaining a causal relationship between an IoT system and
its architecture model at runtime so that any change in the
IoT system is reflected in the model and vice-versa, without
having to halt its operation.

Finally, the source files of theMonitor-IoT tool and a video
that explains the steps for its configuration and execution can
be obtained from the tool’s website: https://sites.google.com/
uazuay.edu.ec/dslmonitoriot.

IV. DESIGN PROCESS OF IoT MONITORING
ARCHITECTURES USING MONITOR-IoT
The proposed process to model the multi-layer monitoring
architecture of an IoT system using Monitor-IoT consists of
three main activities: i) Identification of subsystems, entities,
properties, and dataflows; ii) Modeling of subsystems, enti-
ties, and properties; and iii) Modeling of dataflows. In turn,
each activity is divided into several specific tasks. In Fig. 3,
the process diagram based on SPEM 2.0 (Software & Sys-
tems Process Engineering Meta-Model Specification) [37] is
presented, which details the execution order of the activities
and tasks defined to design IoT monitoring architectures with
the support of Monitor-IoT, as well as the input and output
artifacts that are used during the process. The activities and
tasks included in the process diagram are described below.

1) IDENTIFICATION OF SUBSYSTEMS, ENTITIES,
PROPERTIES, AND DATAFLOWS
This activity receives as input the specification of functional
and non-functional requirements of an IoT system to analyze
it and prepare the documentation required by theMonitor-IoT
DSL to carry out the subsequent monitoring architecture
modeling activities. This activity is divided into four tasks:
1.1) Decomposition of the IoT system. Defines the hierar-

chical structure of the IoT system, breaking it down into
subsystems if they exist. This task aims to promote the
creation of IoT monitoring architectures that guarantee

high cohesion and low coupling between its parts, and
in this way, promote the reuse of the computational and
physical capacities of all or part of the IoT system in
other applications or scenarios. The data to document
for each system or subsystem are: acronym (identifier),
name, description, and application domain to which it
belongs.

1.2) Identification of entities. Defines the physical or digital
entities to monitor. In addition, it determines the digital
entities (computing nodes and IoT devices), the hard-
ware/software resources (e.g., network interfaces, mid-
dlewares, databases, services, APIs, applications), and
the communication networks necessary to support the
monitoring processes at the cloud, fog, and edge layers.
The entities are organized and grouped into subsystems
if they exist. The main data documented by entity are:
name, description, metaclass, category, and subsystem
to which it belongs.

1.3) Identification of entity properties. Describes the prop-
erties to be monitored for each entity. The data to be
specified are: name and definition of the property, type
of property (telemetry, state, metadata), data type and
measurement unit of the property, if the property allows
the unique identification of the entity, and whether the
property value is assigned at design or run time.

1.4) Identification of dataflows. In this task, the dataflows
are specified, describing how the digital entities interact
with each other to support data collection, transport,
processing, and storage. The data to be documented are:
description and type of dataflow (collection or aggre-
gation), type of communication that the dataflow uses
(synchronous or asynchronous), and frequency and time
of dataflow execution.

2) MODELING OF SUBSYSTEMS, ENTITIES, AND PROPERTIES
First modeling activity that uses the Monitor-IoT DSL.
In general terms, this activity focuses on modeling the hier-
archical structure between the system and its subsystems,
designing the structure between physical and digital entities
(computing nodes and their resources), and configuring the
properties to monitor for each entity. This activity is divided
into seven tasks, several of which run in parallel:
2.1) Modeling of subsystems. Designs the hierarchical

structure between the IoT system and its subsystems if
it exists. In addition, this task groups the entities into
subsystems, being able a physical or digital entity to be
reused by several subsystems.

2.2) Modeling of physical entities. Designs the hierarchical
structure between the physical entities identified in the
first activity.

2.3) Modeling of computing nodes at the edge, fog, and
cloud layers. Adds to the model the cloud nodes, fog
nodes, gateways, and/or IoT devices (sensors, tags,
actuators) specified in the first activity and necessary to
support themonitoring processes of the IoT system. The
computing nodes can be contained within the physical
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FIGURE 3. Process diagram to design monitoring architectures for IoT systems with Monitor-IoT.
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entities to provide themwith detection, processing, stor-
age, or actuation capabilities.

2.4) Modeling of resources used by computing nodes.Adds
to the model the hardware and software resources
required by the computing nodes specified in the first
activity.

2.5) Modeling of communication networks and protocols.
Adds to the model the networks and protocols that
support synchronous and asynchronous communication
between digital entities. In addition, it establishes the
networks and protocols used by each of the software
resources (e.g., middlewares, databases).

2.6) Configuration of entity categories. This task groups
entities of the same type (they share common properties
to be monitored) into categories.

2.7) Configuration of entity properties. In this task, the
properties to be monitored are created, together with
their templates containing the properties’ general spec-
ifications. The information contained in the templates
can be reused later in the configuration of common
properties for other entities.

3) MODELING OF DATAFLOWS
Once the physical and digital entities have been incorporated
into the model, this last activity designs how digital entities
interact to support dataflows, for which it is divided into two
tasks:
3.1) Datamapping. In this task, the data sources (source) are

mapped to the logical storage locations (destination) for
each dataflow.

3.2) Modeling of links between digital entities. For each
dataflow, an ordered sequence of links is designed
between the digital entities. This sequence determines
the trajectory of data and how computing nodes and
resources interact in a dataflow to transport the data
from the source to its storage location.

V. ILLUSTRATIVE IoT SCENARIO
An IoT scenario within the Ambient Assisted Living subdo-
main (see Fig. 4) is presented in this section to demonstrate
the usefulness of the Monitor-IoT DSL. The proposed sce-
nario aims to design a monitoring architecture for an emer-
gency management system aimed at older people who live
alone in their homes. The system comprises two subsystems:
i) an environmental control subsystem responsible for moni-
toring temperature, carbon monoxide (CO), and smoke in the
house environment; and ii) a healthcare subsystem to monitor
the heart rate of the older adult. For this, the subsystems
require various computing devices and nodes at the edge,
fog, and cloud layers, which are described in the following
subsections.

A. EDGE LAYER
The IoT platform includes different types of sensors to sup-
port monitoring requirements. A temperature sensor has been
installed in the older adult’s bedroom (see Fig. 4(a)), while

a CO and smoke sensor has been installed in the kitchen
(see Fig. 4(b)). These sensors collect data from the environ-
ment every 10 minutes. In addition, the user has a smartwatch
(Samsung Galaxy Watch3) that includes a heart rate sensor,
which collects data every 30 minutes (see Fig. 4(c)).

The IoT platform also includes the use of two gateways.
On the one hand, a microcontroller (Raspberry Pi 3) that
executes a software application (environmentController) that
calls two APIs (getTemperature, getCO&Smoke) to collect
the data from the temperature, CO, and smoke sensors via
Bluetooth (see Fig. 4(d)). In turn, the software application
synchronously sends the collected data to a local server
located in the user’s home (fog node), consuming a REST-
ful service provided by the fog node. On the other hand,
the smartwatch (Samsung Galaxy Watch3) acts as a gate-
way that runs an App (healthController) that calls an API
(getHeartRate) to retrieve data from the heart rate sensor
(see Fig. 4(c)). Additionally, the App asynchronously sends
the collected data to the fog node, using a broker as an
intermediary.

The gateways and the fog node communicate over a Wi-Fi
local area network using the application protocols: HTTP
(synchronous communication) and MQTT (asynchronous
communication).

B. FOG LAYER
As mentioned, this layer contains a server (HP Proliant
Microserver) located in the user’s home with local stor-
age and processing capabilities (see Fig. 4(e)). In addition,
this fog node includes the following resources: i) a Post-
greSQL database management system whose objective is
to store the low-level raw data from all the sensors of the
IoT platform; ii) an Eclipse Mosquitto broker that imple-
ments an asynchronous data communication model (publica-
tion/subscription model) between the smartwatch and the fog
node; and iii) an application server created using the Node.js
Express framework that contains RESTful services for data
exchange, aggregation, and storage.

The fog node provides the following services: i) a RESTful
service (saveEnvironmentData) that is consumed directly by
the Raspberry Pi 3 software application in order to send
the data obtained from the temperature, CO, and smoke
sensors for storage in the PostgreSQL database (supports
synchronous data collection flows); ii) a RESTful service
(saveHealthData) in charge of obtaining the user’s heart rate
data from the broker and then storing them in the PostgreSQL
database (supports asynchronous data collection flows); and
iii) a RESTFul service (saveHealthSummaryDaily) that cal-
culates the daily average, maximum, and minimum values
of the user’s heart rate and stores them in the cloud node
(supports data aggregation flows).

C. CLOUD LAYER
The proposed IoT scenario requires a cloud node imple-
mented on the Google Cloud Platform (see Fig. 4(f)). This
node has a PostgreSQL database management system to store
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FIGURE 4. Illustrative IoT scenario.

the data resulting from the aggregation operations executed in
the fog node. The fog and cloud nodes communicate over the
Internet using the HTTP application protocol.

D. RESULTING ARCHITECTURE MODEL
Once the IoT scenario has been described, Fig. 5 presents the
multi-layer monitoring architecture designed in the Monitor-
IoT DSL to solve the monitoring requirements proposed in
this scenario.

In Fig. 5(1), the physical and digital entities are modeled,
and the dataflows between them. Physical entities are orga-
nized hierarchically; for example, the house contains the bed-
room and the kitchen, while the older adult contains (wears) a
smartwatch. The digital entities are distributed and contained
in the physical entities. The temperature, CO, and smoke
sensors are distributed in the rooms of the house. The gateway
(Raspberry Pi 3) and the fog node (HP Proliant Microserver)
are contained locally in the house. The heart rate sensor and
a gateway are included in the smartwatch (Samsung Galaxy
Watch3). The cloud node (Google Cloud Platform), being
an external entity, is modeled outside the house. Concerning
software resources, these are modeled within the computing
nodes following the requirements established in the IoT sce-
nario. The controller applications and sensor APIs running
on the gateways. The broker (Eclipse Mosquitto), the appli-
cation server (Node.js Express), and their RESTful services
running on the fog node. While the databases (PostgreSQL)
are located in both the fog and cloud node.

In Fig. 5(2), the hierarchical structure of the system is
modeled, decomposing it into subsystems. This structure
enables entities to be grouped, reused, and shared between
subsystems.

In Fig. 5(3), the networks and protocols that support com-
munication between digital entities and their resources are
modeled. For this case, three networks have been designed.
The former is a proximity network that uses Bluetooth to
communicate between the sensors (temperature, CO, and
smoke) and the respective gateway (Raspberry Pi 3). Then,
a Wi-Fi LAN network that uses the MQTT (asynchronous
communication) protocol between the smartwatch and the fog
node and the HTTP (synchronous communication) protocol
between the Raspberry Pi 3 and the fog node. Finally, a WAN
network that uses the HTTP protocol between the fog and
cloud nodes.

The resolution of the illustrative IoT scenario has shown
that the Monitor-IoT tool is expressive enough to model the
monitoring architecture of an IoT system with a high degree
of abstraction. Specifically, how physical and digital entities
(nodes and resources) relate and interact through dataflows to
support the data collection, transportation, aggregation, and
storage processes.

VI. EMPIRICAL EVALUATION OF MONITOR-IoT
In this section, the empirical evaluation of the Monitor-IoT
DSL is presented. It is aimed to know the user perception
about the ease of use, usefulness, and intention of future
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FIGURE 5. Multi-layer monitoring architecture for the IoT system specified in the illustrative scenario.

use of this tool to design monitoring architectures for IoT
systems.

For the evaluation of Monitor-IoT, a quasi-experiment was
used as an empirical strategy [38]. It includes the participation

of undergraduate students from the last semesters of the
Systems Engineering College at the University of Azuay and
the University of Cuenca. Participants used Monitor-IoT to
design a monitoring architecture for the healthcare subsystem
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described in the previous section as part of the illustra-
tive IoT scenario. In addition, the Technology Acceptance
Model (TAM) proposed by Davis [36] was used. It integrates
user perception variables as a mechanism to predict the adop-
tion and use of Monitor-IoT in future practices.

The following subsections present the adaptation of the
TAM for the evaluation of Monitor-IoT. Also, the design,
execution, and analysis of the results of the quasi-experiment.

A. ADAPTATION OF THE TAM FOR THE EVALUATION OF
MONITOR-IOT
The TAM is a widely used model to predict the acceptance
and use of new technology. This model is based on the
following primary constructors: i) Perceived Ease of Use (E),
the degree to which a user believes that using a target system
will require less effort to perform their tasks; ii) Perceived
Usefulness (U ), the subjective probability of the user that
using a target system will improve their performance at work;
iii) Attitude Towards Using (A), user’s desire to use the target
system (both E and U predict A); iv) Behavioral Intention
to Use (BI), a measure of resistance to perform a specific
behavior, (U and A influence BI); and v) Use, represents the
current use of the system, which is predicted by BI [36].

It is necessary to operationalize the TAM for its application
in evaluating the Monitor-IoT DSL. The operationalization
consists of defining the TAM constructors based on the
relevant perception variables for Monitor-IoT and adapting
a measurement instrument (questionnaire) to evaluate these
variables in the Monitor-IoT context.

Table 3 presents the questionnaire adapted to measure
the perception variables of the TAM, made up of twelve
questions, distributed as follows: i) five questions to measure
perceived ease of use (E); ii) four questions to evaluate the
perceived usefulness (U); iii) two questions focused on the
intention of use (BI); and iv) an open-ended question to
collect suggestions about the Monitor-IoT DSL.

In turn, the questions were formulated using the Likert
scale (5 points), assuming three as a neutral value, fromwhich
the Monitor-IoT tool can be accepted or rejected according to
the perception variables.

According to the adaptation of the TAM, the probability
that the Monitor-IoT DSL will be accepted in practice can be
predicted by testing the following hypotheses:

• H10: The Monitor-IoT DSL is perceived as difficult to
use, H10 = ¬H11.

• H20: The Monitor-IoT DSL is not perceived as useful,
H20 = ¬H21.

• H30: There is no intention to use the Monitor-IoT DSL
in the future, H30 = ¬H31.

• H40: The perceived usefulness is not determined by the
perceived ease of use, H40 = ¬H41.

• H50: The intention to use is not determined by the
perceived ease of use, H50 = ¬H51.

• H60: The intention to use is not determined by the
perceived usefulness, H60 = ¬H61.

TABLE 3. Questionnaire to measure perception.

These hypotheses implicitly contain the TAM variables
(E, U, and BI). Finally, In Fig. 6, the proposed model to
evaluate the user perception about the adoption and use of
Monitor-IoT is presented.

FIGURE 6. Model adapted from the TAM to evaluate the user perception
of the use of Monitor-IoT.

B. DESIGN OF THE QUASI-EXPERIMENT
The quasi-experiment was designed based on the experi-
mental process proposed by Wohlin et al. [39]. As a first
step, the quasi-experiment goal was formulated according
to the Goal-Question Metric (GQM) paradigm proposed by
Basili et al. [40]. In addition, the research questions were
defined. Tables 4 and 5 present the goal and the research
questions, respectively.

Research questions were evaluated through hypothesis
testing. In particular, the first question was studied through
the hypotheses: H10, H20, and H40. Moreover, the second
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TABLE 4. Goal-question-metric for the quasi-experiment.

TABLE 5. Research questions.

question was analyzed through the hypotheses: H30, H50,
and H60.
Regarding the quasi-experiment context, it was determined

by: i) the Monitor-IoT DSL tool; ii) the IoT scenario used
in the Monitor-IoT evaluation, which is within the Ambi-
ent Assisted Living subdomain and consists of the design
of the monitoring architecture for the healthcare subsystem,
described in Section 5; and iii) the participation of 33 under-
graduate students from the last semesters of the Systems
Engineering College at the University of Azuay and the Uni-
versity of Cuenca, who have solid knowledge about Software
Architectures, Model-Driven Development, and Internet of
Things.

The quasi-experiment tasks were defined systematically
and orderly, following the proposed process to design mon-
itoring architectures for IoT systems with the support of the
Monitor-IoT DSL presented in section 4.

The quasi-experiment dependent variables to evaluate
Monitor-IoT were the perception variables defined in the
TAM (E, U, and BI). These variables allowed testing the
hypotheses and were measured using the questionnaire pre-
sented in Table 3.

The quasi-experimental material consisted of the docu-
mentation and tools necessary to carry out the experimental
tasks and a questionnaire (Google Forms) to measure the
user perception once the experiment was carried out. The
supporting documentation included: i) a presentation used by
the researchers to train the participants, which describes the
main concepts related to the Monitor-IoT DSL, the base soft-
ware (Obeo Designer Community Edition) used by Monitor-
IoT, the Monitor-IoT graphical designer’s work environment,
and a training exercise that contemplates the design of the
monitoring architecture of the environmental control subsys-
tem, described in the illustrative IoT scenario (section 5);
ii) a video tutorial with the description of the steps for the
installation and configuration of the Monitor-IoT tool; iii) a
video tutorial on the training exercise; iii) a guide with the

description of the process to design monitoring architectures
for IoT systems using Monitor-IoT; and iv) a worksheet with
the description of the experimental exercise (design of the
monitoring architecture for the healthcare subsystem), which
includes several fields to collect metrics on the activities
carried out by the participants and the products obtained.
The experimental material was distributed to the participants
through a website.

C. EXECUTION OF THE QUASI-EXPERIMENT
The quasi-experiment was carried out virtually on the Zoom
platformwith 33 undergraduate students of the Systems Engi-
neering College, 21 belonging to the University of Cuenca
and 12 to the University of Azuay. In addition, it lasted four
hours and was divided into two sessions.

The first session focused on the training of the participants.
This session lasted an hour and a half. It included the follow-
ing activities: i) presentation of the main concepts related to
Monitor-IoT (e.g., Internet of Things, systems architecture,
domain-specific languages); ii) explanation and support in
the installation and configuration process of Monitor-IoT,
iii) review of the work environment (design area, tool palette,
properties window) of Monitor-IoT, how to instantiate the
elements of the DSL, define their properties, and interconnect
them with each other; and iv) resolution of the training exer-
cise in order to demonstrate howMonitor-IoT should be used
to design a monitoring architecture according to the process
presented in section 4.

The second session was oriented to the development of the
experimental exercise by the participants. This session lasted
two and a half hours, distributed as follows: i) 20 minutes to
present the practical case (healthcare subsystem) to be solved
with the Monitor-IoT tool; ii) 120 minutes to design the mon-
itoring architecture of the experimental exercise; however,
it should be noted that the participants were allowed to finish
the experiment, even if time was running out in order to
mitigate the ceiling effect; and iii) 10 minutes to answer a
questionnaire in Google Forms with the questions presented
in Table 3, as well as to send the resolved worksheet of the
experimental exercise and the file with the architecture model
obtained in XMI format. The researchers responsible for
experimenting clarified any doubts or questions throughout
the development of the experimental exercise.

D. RESULTS OF THE QUASI-EXPERIMENT
Descriptive statistics, box plots, and tests with the support of
the SPSS V20 tool (with α = 0.05) were used to analyze
the data collected from the experimental exercise. The data
were analyzed to contrast the established hypotheses that
include the TAM perception variables (E, U, and BI). For
the acceptance or rejection of the hypotheses, the significance
levels suggested by Moody [41] were used.

Before analyzing user perception, the monitoring archi-
tecture models for the health subsystem designed by the
participants were evaluated concerning the requirements
established in the experimental scenario. The evaluation
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results determined that all 33 participants satisfactorily ful-
filled the experimental requirements and tasks. Therefore, all
the cases were qualified as valid for further analysis.

1) ANALYSIS OF THE USER PERCEPTION
Fig. 7 presents the box plots for each perception variable. As a
common denominator, it is evident that the mean of each vari-
able is greater than the neutral value (3) of the Likert scale.
In turn, the box plot of the intention to use variable (BI) shows
a single outlier belonging to the participant with identifier 1.
This participant has been excluded to avoid distortions in the
subsequent statistical analysis.

FIGURE 7. Box plots of the perception variables. (E, U, and BI.)

As part of the analysis, the Shapiro-Wilk test was applied
to check if the perception variables have a normal distribution
and determine the type of test to be used to contrast the null
hypotheses H10, H20, and H30. The penultimate column of
Table 6 shows the results of the Shapiro-Wilk test, where it
can be observed that all the variables studied (E, U, and BI)
do not have a normal distribution (p < 0.05). Therefore,
the Wilcoxon one-tailed one-sample test (nonparametric test)
with a test value equal to three (neutral value of the Likert
scale) has been selected to contrast the hypotheses.

The results of the Wilcoxon one-tailed one-sample test for
each variable are presented in the last column of Table 6,
which shows that all the perception variables (E, U, and BI)
have a very high level of significance (p< 0.001). Thus, these
results allow rejecting the null hypotheses H10, H20, andH30,
which means that, the participants perceive the Monitor-IoT
DSL as an easy-to-use and useful tool, and they intend to use
this tool to design monitoring architectures for IoT systems
in future projects.

2) ANALYSIS OF CAUSAL RELATIONSHIPS
At this point, the structural part of the TAM is validated in
terms of the causal relationships between the variables per-
ceived ease of use (E), perceived usefulness (U), and intention

to use (BI). The simple linear regression statistical method
has been used to test the hypotheses H40, H50, and H60.
These hypotheses are defined as causal relationships between
the variables indicated above. The results obtained for each of
the causal relationships are described below:
• Perceived Ease of Use vs. Perceived Usefulness. A
linear regression model was constructed with E as the
independent variable and U as the dependent variable,
as presented in (1). The resulting model shows a high
significance (p< 0.01), and the coefficient of determina-
tion (R2) indicates that the variable E explains 33.1% of
the variance of U (see Table 7). Consequently, the results
allow rejecting the null hypothesis H40 and accepting its
alternative hypothesis, which means that the perceived
usefulness (U) is partly determined by the perceived ease
of use (E).

U = 2.124+ 0.547 ∗ E (1)

• Perceived Ease of Use vs. Intention to Use. The linear
regression model is presented in (2), where E is the inde-
pendent variable and BI is the dependent variable. The
resultingmodel has a very high significance (p< 0.001),
and the coefficient of determination (R2) indicates that
the variable E explains 50.1% of the variance of BI
(see Table 8). Hence, the results allow rejecting the null
hypothesis H50 and accepting its alternative hypothesis,
which corroborates that the intention of use (BI) is partly
determined by the perceived ease of use (E).

BI = 1.186+ 0.763 ∗ E (2)

• Perceived Usefulness vs. Intention to Use. The linear
regressionmodel is presented in (3), where U is the inde-
pendent variable and BI is the dependent variable. The
model obtained has a very high significance (p< 0.001),
and the coefficient of determination (R2) indicates that
the variable U explains 48.8% of the variance of BI (see
Table 9). Therefore, the results allow rejecting the null
hypothesis H60 and accepting its alternative hypothesis,
which means that the intention of use (BI) is partly
determined by the perceived Usefulness (U).

BI = 0.964+ 0.791 ∗ U (3)

3) DISCUSSION
The quantitative evaluation showed that the experiment
participants found the Monitor-IoT tool easy to use and
useful. It even evidenced that they would be willing to use
Monitor-IoT to design IoT monitoring architectures in future
projects. Likewise, this evaluation demonstrated that the par-
ticipants’ perception of ease of use and usefulness partly
determines their intentions to use Monitor-IoT in the future.
However, there may be other variables that influence the
participants’ intention to use. Fig. 8 presents a synthesis of
the results obtained in the evaluation of Monitor-IoT with the
support of the TAM.
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TABLE 6. Results for perception variables.

TABLE 7. Simple linear regression model between perceived ease of use and perceived usefulness.

TABLE 8. Simple linear regression model between perceived ease of use and intension of use.

TABLE 9. Simple linear regression model between perceived usefulness of use and intension of use.

FIGURE 8. Synthesis of the results of the application of the TAM to
Monitor-IoT.

Regarding the qualitative evaluation (open-ended ques-
tion), a remarkable aspect is that several participants consider
it essential to have a methodological process associated with
Monitor-IoT since it was very helpful in fulfilling the tasks
and requirements of the experiment. In turn, the participants’
suggestions have allowed the refinement and continuous
improvement of the Monitor-IoT tool and its methodological
process.

The IoT scenarios used during the pilot test and training
and experimental exercises demonstrated that Monitor-IoT
has a sufficiently comprehensive domain language to
represent the key concepts that the diverse IoT monitoring
environments may require. In this sense, the evaluation of
Monitor-IoT contemplated: i) different types of physical enti-
ties and properties to be monitored; ii) diversity of com-

puting nodes, together with their essential resources (APIs,
applications, services, databases and their structure, brokers,
topics, network interface) at the edge, fog, and cloud lay-
ers; and iii) communication flows, both synchronous and
asynchronous. Likewise, the evaluation evidenced a saving
of time and effort when modeling the IoT monitoring sce-
narios architectures due to using a language that allows
the definition of property templates for IoT entities of the
same type. In general, the empirical evaluation has confirmed
that Monitor-IoT satisfactorily covers the limitations of the
analyzed DSLs and the challenges exposed in the related
work.

Finally, unlike related work on DSL solutions that focus on
the edge, fog, and cloud layers, this research work designed
and executed a rigorous empirical evaluation to validate the
usability of Monitor-IoT based on the end-user perception.

E. THREATS TO THE VALIDITY OF THE
QUASI-EXPERIMENT
This subsection presents the main threats to the validity of
the Monitor-IoT evaluation results that were mitigated during
the development of the quasi-experiment. These threats are
organized according to the classification proposed by Cook
and Campbell [42].

1) INTERNAL VALIDITY
In this study, internal validity is relevant because causal rela-
tionships are examined. The main threats to internal validity
were the participants’ experience and the biases produced by
the researchers, the experimental material, and the Monitor-
IoT tool. Regarding participants’ experience, a training phase
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was prepared, focused on developing a practical case that
provides participants with a clear understanding of the design
process of monitoring architectures for IoT systems with the
support of the Monitor-IoT DSL. In turn, the biases pro-
duced by the researchers, the experimental material, and the
Monitor-IoT tool were reduced through a pilot experiment.
Here, expert researchers in the area participated during the
development of the experiment in detecting and correcting
errors related to ambiguities in the experimental material and
usability problems of the Monitor-IoT tool.

2) EXTERNAL VALIDITY
The representativeness and generalizability of the evalua-
tion results may be affected by the evaluation design and
the context of the selected participants. On the one hand,
to mitigate the threats related to the evaluation design, a suf-
ficiently complete IoT scenario was proposed, including dif-
ferent types of entities (physical and digital) and types of
communication (synchronous, asynchronous). In addition,
the IoT scenario included multiple subdomains (e.g., smart
home, health) throughout the pilot test, training case study,
and experimental exercise. On the other hand, to reduce
the threats related to the context of the participants, the
experiment had the participation of undergraduate students
from the last semesters of the Systems Engineering Col-
lege of several universities. These students could be con-
sidered the next generation of professionals [43] as it has
been shown that, under certain conditions, there is not a
significant difference between this type of students and pro-
fessionals [44], [45]. Therefore, the ability of these stu-
dents to design architectures for IoT systems is comparable
to junior professionals, even more so when only students
who had passed courses on Software Architectures, Model-
Driven Development, and Internet of Things have been
selected.

3) CONSTRUCT VALIDITY
The main threat was the reliability of the questionnaire, for
which the Cronbach’s alpha reliability test [46] was applied
to each group of questions related to the perception vari-
ables. The results of the tests were greater than the minimum
accepted threshold (α = 0.70), obtaining a Cronbach’s alpha
for perceived ease of use (E) of 0.808, perceived usefulness
(U) of 0.778, and intention to use (BI) of 0.855, which shows
high internal consistency.

4) CONCLUSION VALIDITY
The sample size of 33 participants was one of the main
problems since it can affect the causality between the differ-
ent variables. However, the results were encouraging since
all the participants successfully carried out the requirements
and tasks proposed in the experiment. In turn, as mentioned,
a homogeneous group of participants has been selected to
control the risk of variation due to individual differences that
may grow due to treatment.

VII. CONCLUSION AND FUTURE WORK
The bibliographic review has shown that despite the existence
of several proposals on DSLs oriented to the domain of IoT,
some problems persist in this field, mainly related to the
functional limitations that DSLs present. This situation is due
to metamodels that provide a limited language to represent
the possible digital entities and variants of dataflows (syn-
chronous and asynchronous) that an IoT system may require
during the monitoring processes at the edge, fog, and cloud
layers. Furthermore, these metamodels are not aligned with
a standardized reference architecture for IoT; even ambigui-
ties have been observed between the solutions regarding the
meaning and use of various concepts.

In this sense, the main contribution of this work consists
of providing a domain-specific language (Monitor-IoT) to
facilitate and streamline the design of multi-layer monitoring
architectures for IoT systems with a high level of abstraction,
expressiveness, and flexibility. For this, theMonitor-IoTDSL
comprises a graphical designer and a metamodel aligned
with the reference architecture for IoT ISO/IEC 30141:2018,
which also incorporates a set of common and relevant entities
among the related work studied. Furthermore, it ensures the
semantic coherence of the metamodel and provides a lan-
guage capable of modeling a wide variety of digital entities
and dataflows between them to support the data collection,
transportation, processing, and storage processes.

The empirical evaluation of Monitor-IoT, through the
application of a quasi-experiment and the Technology Accep-
tance Model (TAM), demonstrated the favorable intention
of the experiment participants to design monitoring archi-
tectures for IoT systems in future projects with the sup-
port of Monitor-IoT; since they also consider Monitor-IoT
as an easy-to-use and useful tool for the development of
IoT systems.

This work is a first step towards developing a methodology
and support infrastructure based on MDE and MAPE-K to
build self-aware and self-adaptive IoT systems. In future
work, it is proposed to build a synchronization engine to
support at runtime the causal relationship between the IoT
system and its architecture model designed in Monitor-IoT.
In addition, it is necessary to continue with the evalua-
tion of Monitor-IoT through the execution of experiments
or case studies in other IoT subdomains with the par-
ticipation of industry professionals, as well as expanding
the scope of Monitor-IoT to support the report generation
dataflows for decision-making and the actuation dataflows of
an IoT system.

APPENDIX
ADDITIONAL METACLASSES OF THE MONITOR-IoT
METAMODEL
This appendix presents the description of the additional meta-
classes of the Monitor-IoT metamodel. In turn, it includes
Fig. 9, 10, 11, and 12 with all the metaclasses, relationships,
attributes, and enumerations of the metamodel.
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FIGURE 9. Monitor-IoT metamodel (Part 1), includes metaclasses and relationships to represent subsystems, physical entities, digital entities
(computing nodes, IoT devices), and communication networks.
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FIGURE 10. Monitor-IoT metamodel (Part 2), includes metaclasses and relationships to represent computing resources and the interactions (links)
between them.
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FIGURE 11. Monitor-IoT metamodel (Part 3), includes metaclasses and relationships to represent dataflows, links between digital entities, and
mapping rules.

EntityCategory. Defines a grouping of entities of the same
type to specify a single time (using a template) general infor-
mation about the common properties and APIs of these enti-
ties. This abstraction reduces the workload when modeling
the IoT monitoring architecture. For example, it can create a
category that represents all the rooms to be monitored in a
house (see Fig. 1(3) and 9(3)).
PropertyTemplate. Defines a template with the general

specifications of a common property for all entities in a
category. The metamodel supports three types of properties:
i) metadata, which contains information that rarely changes
about an entity (e.g., serial number, brand, model, manufac-
ture date) and can be determined at design time; ii) telemetry,
data about a physical entity or the environment collected
through sensors (e.g., temperature or humidity in a room,
blood pressure of a patient); and iii) status, information that
describes the current status of a digital entity (e.g., battery
power level of a sensor, amount of memory or processing
used by an edge node, bandwidth used by a network). A prop-
erty can uniquely identify an entity within an IoT system
(identifier attribute). In addition, it has a data type (dataType
attribute) and a measurement unit (MeasurementUnit meta-
class) (see Fig. 1(5), 9(5, 6), and 10(9)).
IoTDevice.A device located at the network edge that asso-

ciates physical entities in the real worldwith other digital enti-
ties in an IoT system. IoT devices interact through a network,

and depending on their hardware and power capabilities, they
can communicate directly or through an IoT gateway with
digital entities (cloud or fog nodes) located in local or wide
area networks. Sensors, tags, and actuators are a type of IoT
device (see Fig. 1(18), 9(19), and 10(3)).
Sensor. An IoT device that perceives or monitors specific

properties of a physical entity and transforms them into
digital data to be transmitted over a network. For example,
a temperature sensor that sends measurements to a smart-
phone application to monitor the temperature of a room
(see Fig. 1(20) and 9(21)).
Tag. An object that can be applied to or incorporated into

a physical entity to identify or trace it. The identification
process is carried out by sensors (readers) that read the tags
(see Fig. 1(21) and 9(22)).
Actuator. An IoT device that acts on (changes) the proper-

ties of a physical entity based on digital instructions; that is, it
allows modifying the state of a physical entity. For example,
a mobile application that connects via Bluetooth with an air
conditioner (actuator) to control the temperature of a room
(see Fig. 1(22) and 9(23)).
IoTGateway. A computing node located at the network

edge. It acts as an intermediary to interconnect IoT devices
located in proximity networks with other digital entities
(cloud or fog nodes) located in local or wide area networks.
In turn, a gateway can offer a wide range of functionalities,
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FIGURE 12. Monitor-IoT metamodel (Part 4), includes the enumerations used by the attributes of the metaclasses.

such as i) agent for configuring, managing, and controlling
IoT devices; ii) data cleaning, filtering, and routing; that is,
it determines what data should be sent to the fog or cloud
nodes and what data should be processed locally; iii) storage
of data collected by associated IoT devices, as a solution to
problems related to intermittent or saturated communication
networks; iv) local data processing for fast and effective con-
trol of actuators based on input data from sensors; v) protocol
conversion and address mapping; and vi) implementation of
security at the edge device level. Furthermore, the gateways
can be standalone equipment or be integrated with other
IoT detection and control devices (sensors, actuators). There-
fore, they can be implemented in: servers, personal comput-
ers, microcontrollers, smartphones, routers, virtual machines,
among others (see Fig. 1(19) and 9(20)).

NetworkInterface. Specifies an interface that connects a
computing node or IoT device to a communication network
to share resources and data. A network interface uses a
communication technology (e.g., Wi-Fi, Ethernet, Bluetooth)
and has some kind of network address that consists of
a unique node identifier in its own right (see Fig. 1(24)
and 10(4)).
API (Application Programming Interface). A software

component that encapsulates functionalities to manage IoT
devices (sensors, tags, actuators) with a high degree of
abstraction. Specifically, an API can retrieve raw data of
the physical entities properties or act on (change) them.
The metamodel allows specifying the input data (Parame-
ter metaclass) and the output information (ReturnVariable
metaclass) of an API, as well as encapsulating its instruction
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sequence (instructions attribute) (see Fig. 1(34, 35, 37)
and 10(6-8)).
Application. A software component that offers a set of

functionalities to perform a specific task. An application can
be: desktop, web, mobile, or embedded, and it can run on the
cloud, fog, or edge nodes. Furthermore, an application can
call APIs to access the data observed by the sensors or control
the actuators, consume services to exchange data with other
digital entities (synchronous communication), and publish
or receive data through a broker (asynchronous communi-
cation). Finally, an application can have a visual interface
to interact with human users. For example, in an IoT sys-
tem for a smart home, a user using an application installed
on a smartphone can monitor or adjust room temperature
(see Fig. 1(36) and 10(11)).
Service. A software component that, through an open and

standardized interface, provides a set of functional capabili-
ties to exchange, store, and process data, hiding the hetero-
geneity of the entities involved. The services are contained in
middlewares and can be accessed through endpoints. A ser-
vice can interact with other services to provide high-level
functionality. Also, services can receive input data (Param-
eter metaclass) and produce output information (ReturnVari-
able metaclass) represented in different formats (e.g., JSON,
XML, RDF). Additionally, services can contain headers to
send metadata associated with the service request or response
(Header metaclass) (see Fig. 1(32-35) and 10(7, 8, 12, 13)).
Middleware. A software component that supports and

provides services for synchronous and asynchronous data
management (exchange, processing, storage). This resource
facilitates interoperability between heterogeneous digital
entities located in a distributed manner in the edge, fog,
and cloud layers of an IoT platform, through the implemen-
tation of services that hide the particular implementation
details of each digital entity. In addition, the metamodel
allows specifying one or more protocols and communica-
tion ports through which the middleware offers its services
(see Fig. 1(29) and 10(14)).
Broker. It is an explicit specialization of a middleware that

supports messaging or asynchronous data transfer between
the digital entities of an IoT system. A broker is responsible
for receiving, organizing, and publishing the data (payload) of
the IoT entities (publishers) in topics and distributing them
to all the IoT entities (subscribers) that have subscribed to
said topics. This data transmission model is recommended
for the Internet of Things since IoT devices often have
power, processing, and bandwidth limitations. The properties
data of an entity are organized and identified by the Topic
metaclass in a Broker. Topics can be atomic if they include
data for a single property or composite if they include data
for multiple properties. Furthermore, they can use different
formats for data exchange (e.g., JSON, XML, RDF, HL7)
(see Fig. 1(30, 31) and 10(16, 17)).
DataBase.A software component that stores the data of the

monitored properties in an IoT system. The data to be stored
can be raw (obtained directly from IoT devices) or result from

aggregation operations on the collected data. The metamodel
allows specifying the connection string of the databases used.
A database contains tables (DataTable metaclass) that can be
temporary or permanent. For the first case, a time interval
must be defined to manage the persistence of the data. In turn,
a table is made up of columns (DataColumn metaclass) that
can be of two types: i) data, which contains the data collected
or processed for a property; and ii) metadata, which contains
information that describes the data collected or processed;
for example, the IoT device that collected the data, when
the data were collected (timestamp), where the data were
collected, or the quality of the data collected (precision, com-
pleteness). Finally, theDataInstance metaclass represents the
column values, that is, the values of the monitored properties
and their associated metadata (see Fig. 1(25-28), 10(18-21),
and 11(8)).

Finally, Fig. 12 presents the enumerations of the Monitor-
IoT metamodel. Note that some of the enumerations used
by the attributes of the metaclasses are not exhaustive (e.g.,
SensorType, ActuatorType, AggregationOperation, Commu-
nicationTechnology); that is, they do not reflect all the
possible values. Hence, new values may be required for
the enumerations depending on the needs of each IoT
scenario.
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