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Abstract: This research proposes a methodology for designing and testing a self-optimizing control
(SOC) algorithm applied to a wind energy conversion system (WECS). The SOC maximizes WECS
power output and reduces the mechanical stress of the wind turbine (WT) blades by optimizing a
multiobjective cost function. The cost function computation uses a combined blade element momen-
tum (BEM) and thin-wall beam (TWB) model for calculating wind the turbine power output and
blades’ stress. The SOC deployment implies a low computational cost due to an optimization space
reduction via a matrix projection applied to a measurement vector, based on a prior offline calcula-
tion of a projection matrix, H. Furthermore, the SOC optimizes the operation of the WECS in the
presence of uncertainty associated with the wind speed variation by controlling a linear combination
of measured variables to a set point. A MATLAB simulation of a wind turbine model allows us to
compare the WECS operating with the SOC, a baseline classic control system (BCS), and a nonlinear
model predictive controller (NMPC). The SOC algorithm is evaluated in terms of power output,
blades’ stress, and computational cost against the BCS and NMPC. The power output and blades’
stress performance of the SOC algorithm are compared with that of the BCS and NMPC, showing a
significant improvement in both cases. The simulation results demonstrate that the proposed SOC
can effectively optimize a WECS operation in real time with minimal computational costs.

Keywords: blade aerodynamics; maximum power extraction; measurement selection or combination
matrix; SOC; stress or fatigue reduction; WECS; wind turbine

1. Introduction

Wind power technology is a crucial element in all climate change mitigation strategies.
Technological innovations and economies of scale have allowed the world wind energy
market to grow considerably during the last decade. As a result, the installed capacity of
wind energy grew to 837 GW at the end of 2021, contributing to an increased commercial
demand for wind energy conversion systems (WECS) of all sizes [1].

Wind turbines transform the kinetic energy contained in the wind into electric en-
ergy [2–4]. Despite differences in structure, technology, and size, all wind turbines, from
systems rated in the kW range to large systems with rated power values of several MW, are
based on the same general principle [5–7]. From a power system’s perspective, the most
relevant distinction is based on the configuration for control and power conversion, with
four basic types covering most commercially available products [8,9]. While a modern
wind turbine has many control systems for different purposes [10], the main control task is
to regulate the power output as a function of the wind speed. Below the rated wind speed,
the primary purpose of the control system is to deliver the maximum amount of power
to the grid or (local) load at a given wind speed; this is generally referred to as maximum
power point tracking (MPPT) [11,12]. When extracting power from the wind, wind turbines
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are exposed to several different loads, which have to be analyzed and accounted for in the
design phase by a suitable structural design and material selection. Once put in operation,
the stresses developing in the components of a wind turbine, particularly in the blades,
are generally not monitored or controlled. However, structural health monitoring (SHM)
systems are increasingly recognized in the academic literature [13] as a requirement for
very large wind turbines, particularly those operating in remote locations (such as offshore)
where servicing operations are complex and costly.

1.1. Prior Work

Essential control functions in WT include active and passive stall regulation, and pitch
angle control [2,8,9]. While pitch control is generally used for output power control, it can be
generalized to reduce the loads acting on the wind turbine blades, reducing the probability
of fatigue damage. This approach was studied by Wu Hou Lio [14]. Modern control
techniques such as nonlinear model predictive control (NMPC), adaptive model predictive
control (AMPC), and proportional–integral–derivative schemes based on artificial neural
networks (NN-PID) have been shown to be capable of reducing the stress levels in the
blades for a given power extraction rate [15,16]. In an experimental set using a test-bench-
mounted small-turbine generator coupled to a wind speed simulator, García et al. [17]
were able to show that even in a fixed blade setup, the combination of an advanced control
scheme with an objective function considering both the extracted power and the blade
stress allowed a reduction in the stress at a given output power level, or conversely, an
increase in power for a given blade stress level. Loza et al. [18] studied simulated fatigue
damage in three small wind turbine configurations, using fixed-rpm (passive) stall control
and blade-pitch control, both in a variable and a fixed-rpm configuration. The blade-pitch
control generally allowed for a longer fatigue life, although the stall control did show some
advantages at sites with high average wind speeds.

Similar work was conducted by Chenyang Yuan et al. [19], who also developed a
comparative study of the effect on fatigue life between a fixed-pitch and a blade-pitch
control scheme, where the latter was based on a PID control system. The authors referred
to the blade-pitch control as a baseline (classic) control system (BCS). Implementing the
BCS resulted in a significant reduction in blade loads and a corresponding increase in
fatigue life.

In [20], a small signal model for a wind turbine equipped with a direct-drive permanent-
magnet synchronous generator (PMSG) was presented, connected to the grid through
power converters in a back-to-back configuration. The proposed small-signal model in-
cluded two approaches: tip-speed ratio (TSR) control and optimum torque control (OTC).
OTC was found to have superior performance and allowed for power output smoothing.
The authors also claimed that mechanical stresses were reduced in the OTC control scheme.

A novel approach was proposed by Iordanov [21] to explore the idea of “self-learning
wind turbines.” A data-driven control scheme, termed self-optimizing control (SOC), was
introduced and applied to a 5 MW offshore wind turbine. The focus of the work was on the
maximization of power extraction. The proposed scheme was based on the measurements
of the operating data of the wind power plant, such as power output (P), pitch angle (β),
angular speed, and torque of the rotor (ωG and Γ, respectively), and the generator efficiency
(η). The objective was to determine an optimal control law by applying the so-called
global SOC or gSOC scheme, which considered β and ωG as the manipulated variables,
the wind speed (v) as the disturbance, and the objective function J to be maximized as
the output power (J = P = Γ ·ωG · η). The optimal control values were found through a
regression and linear combination. The results indicated that the gSOC strategy successfully
maximized J in region II of the WT without any prior knowledge of the dynamics of this
relatively complex system but only based on the operational data provided.
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1.2. Scope and Contribution

In the present work, the SOC control scheme proposed by Iordanov et al. [21] was
generalized to reconcile the conflicting objectives of minimizing mechanical stress in the
WT blades and maximizing power extraction. The generalized SOC model draws on
the previous work of two of the authors [15,16] on wind turbine control based on an
aeroelastic model, which allows the calculation of high-resolution blade stress maps for
any given operating point. Furthermore, defining a suitable objective function allows the
co-optimization of the output power and blade stresses. It is shown that the modified SOC
approach significantly reduces blades’ stresses for a given power output level compared
to standard pitch control schemes, such as BCS. Additionally, the results are compared to
those of a nonlinear model predicted control (NMPC) scheme.

The proposed SOC control scheme was implemented in MATLAB/Simulink. The
simulations were conducted for various wind speeds and turbulence intensities, and the
results were compared to those of the BCS and NMPC schemes. The comparison showed
that the generalized SOC model outperformed BCS and NMPC regarding the blade stress
reduction for a given power output level. Furthermore, it was also observed that the SOC
control scheme could extract more power from the turbine compared to the NMPC while
keeping blade stresses within acceptable levels. The results confirm that the generalized
SOC model is an effective way to reconcile conflicting objectives in wind turbine operation.

Fatigue loading significantly affects wind turbines’ lifespan, especially in the rotor
blades. Fatigue loading occurs due to the combination of the wind field’s stochastic nature
impacting the rotor and rotational sampling caused by the finite spatial coherence of the
wind field [22]. Excessive fatigue loads reduce blade life and increase maintenance costs
and financial losses [23]. Therefore, a careful consideration of fatigue is crucial during
wind turbine design and operation. Extensive literature exists on this subject, primarily
focusing on utility-scale turbines due to the cost-effectiveness of testing. However, in small
wind turbines, where manufacturers face challenges when conducting extensive testing,
addressing fatigue becomes even more significant.

2. Wind Turbine Model

In this study a simulated phasor-type wind turbine model was implemented for which
the SOC control scheme calculated an optimal value of the rotational speed of the WT(

ωre f

)
, obtained from the minimization of a cost function combining the output power

and the blade stress. This value, ωre f , minimized the cost function and ensured that the
maximum power was extracted from the WECS while reducing the mechanical stress on
the wind turbine blades. The normalized stress was calculated through an aeroelastic
BEM/TWB model.

The wind turbine model was based on the configuration described in Rosyadi et al. [24].
Figure 1 shows the architecture of the wind turbine model, which is composed of a wind
turbine rotor with pitch angle control, whose reference is the angular speed of the tur-
bine; the drive train; a permanent-magnet synchronous generator (PMSG); a back-to-back
electronic conversion system made up of the stator-side converter (SSC) and a grid-side
converter (GSC), as well an LCL coupling filter. The GSC converts the dc voltage into a
three-phase ac voltage with a fixed frequency, allowing for power injection into the grid.
The PMSG and the LCL filter are modeled by voltage differential equations expressed in
the dq reference system. Refer to Table 1 for a complete list of definitions of acronyms and
variables used throughout this document.
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Table 1. Variables and acronyms definition.

Symbol Definition Symbol Definition

vw Wind speed ωr Rotational speed of the turbine shaft
Pm Mechanical power output Ps, Qs Active and reactive power at the PMSG output

Isd, Isq Stator current in directions d and q Pg, Qg Active and reactive power output of LCL filter

Igd, Igq Grid current in directions d and q Vsd,
Vsq

Stator voltage components in directions d and q

Vid, Viq Three-phase reference voltages at the GSC in d and q Vdg,
Vdg

Three-phase reference voltages in the SSC in d and q

Vabc Three-phase grid voltage Iabc Three-phase grid current
λ Tip-speed ratio β Pitch angle

εzz Strain on the surface along z-axis of the blade γsz Shear strain in the plane of the blade material
ζ Normalized stress factor φ(z) Rotation angle of the local blade section

Pnom Nominal power H Optimal projection matrix
c Vector of selected controlled variables y Vector of measurements at the process output

Wd, We Diagonal matrices representing instrumentation error BCS Baseline control system
NMPC Nonlinear model predictive control SOC Self-optimizing control

Grid

LCL filterDC GSCSSCTurbine
Pg, Qg

Vg(dq)

Ig(dq)

Vdc

QsPsωr

β1,2,3

ωr

ωre f V∗iV∗sIs(dq)

Ps, Qs

PMSG

SOC
CONTROLLER

PITCH
CONTROL

GSC
CONTROLLER

PWM

SSC
CONTROLLER

PWM

Figure 1. Architecture of the phasor-type model for a WT based on PMSG.

2.1. Aerodynamic Model of the Wind Turbine

The aerodynamic model was based on a three-blade horizontal wind turbine model.
The wind power that can be extracted from a WT can be written as follows:

P =
1
2

ρACp(λ, β)v3
w (1)

λ =
ωtR
vw

(2)

where P is the power extracted from the wind, ρ is the air density, A is the swept area for
rotor radius R, vw is the wind speed, λ is the tip-speed ratio (TSR), β is the pitch angle,
ωt is the rotational speed of the turbine shaft, and Cp is the power coefficient, which is a
function of both the tip speed and the pitch angle, β. In [25,26] a parametric expression for
Cp is given as:

Cp(λ, β) = c1(c2/λi − c3β− c4)e−c5/λi + c6λ (3)

1
λi

=
1

λ + 0.08β
− 0.035

β3 + 1
(4)

In this work, the coefficients of (3) given in [27] were used: c1 = 0.5176, c2 = 116,
c3 = 0.4, c4 = 5, c5 = 21, and c6 = 0.0068.
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The power extraction characteristic as a function of the shaft rotational speed (ωr)
for different wind speeds and a pitch angle of zero degrees is shown in Figure 2, which
shows that for the nominal shaft frequency (ωs = 1 pu), the maximum power extraction is
obtained at a wind speed of vw = 10 m/s.

The MPPT was calculated with (5). The advantage of using this relationship is that
the wind speed is not measured directly, therefore variations in the wind are not instantly
reflected in the reference signal. See [11] for more details.

Pmpp =
1
2

ρπR2
(

ωrR
λopt

)3
Cp_opt (5)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

Figure 2. Power and maximum power point (MPP).

2.2. Integrated BEM/TWB Model

The BEM/TWB model formulation was taken from [28]. The BEM (blade element
momentum) part of the model allows the calculation of blade loadings at different sections
along the blade resulting from the aerodynamic lift and drag at each section, based on the
calculated net inflow angle and the given lift and drag characteristics of the airfoil chosen
for a given section [29].

As opposed to traditional aeroelastic assessments of wind turbine blades, where the
stress is typically monitored only at a fixed predefined location, the TWB model allows for
the construction of a full stress map for the complete blade shell. Given the fast execution
times, the BEM/TWB can be used in control applications where the use of detailed finite-
element models would be prohibitive. The main assumptions in the model are listed below:

• The internal structure of the blade and the resonant effects produced by the wind are
not considered;

• Aerodynamic forces are calculated using BEM theory in steady state;
• The rotor plane is always oriented perpendicular to the wind;
• The wind speed is uniformly distributed along the blade.

The axial and shear strains can be expressed as follows:

εzz = ε0
zz + [y(s)− n cos α(s)]κx + [x(s) + n sin α(s)]κy + [ω(s)− nq(s)]κw (6)

γsz = γsz + 2nκxy (7)

where εzz is the axial strain on the surface along the axis (z), and γsz is the shear strain in
the plane of the blade material (s, z). Cartesian coordinates (x, y, z) are aligned with the
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movement in the flapwise, edgewise, and axial directions, respectively; n and s correspond
to a system of normal and tangential coordinates of an arbitrary point located on the surface
and with the origin located in the middle of the cross section; κx, κy, κxy, and κω are the
curvatures of the surface in the xz and yz planes, the twist rate, and the twist curvature,
respectively; ε0

zz is the first-order axial stress on the axial line. γsz contains coupling terms
between axial strain and shear strain.

The blades of a wind turbine are manufactured with sheets that have a specific thick-
ness, elastic properties, and different orientations (directional and bidirectional). From (6)
and (7), it is possible to determine the axial (σzz) and shear (σsz) stress in the layer k at any
position of the blade using a plane-stress orthogonal constitutive law [28]:[

σzz
σsz

]
k
=

[
Q11 Q12
Q12 Q22

]
k

[
εzz
γzz

]
(8)

where Qij are the stiffness coefficients of the material in the global coordinate system, which
reduce to planar stress conditions through an orthotropic law.

The stresses of (8) are transformed to the material coordinate system using the rotation
matrix [R] as follows: σ11

σ22
σ12


k

= [R]k

[
εzz
γsz

]
k

(9)

The TWB model calculates the stress value at each point in the shell of the wind turbine
blade, allowing the most critical point on the blade to be determined at any given moment,
as opposed to models where the stress is monitored only at a predetermined location (e.g.,
the root section of the blade). Criticality can be assessed by comparing the actual stress σi,j
at a given location to the corresponding strength (Si,j), i.e., the maximum tolerable stress.
This is done by defining the normalized stress factor (ξ) as

ξi,j =
σi,j

Si,j
(10)

where (1,1) corresponds to stresses along the fiber directions, (2,2) to stresses perpendicular
to the fiber, and (1,2) to shear stress.

The equations of motion for a section of a given aerodynamic profile at an axial
position z in the blade can be expressed as

[M]{ü}+ [C]{u̇}+ [K]{u} = { f } (11)

where [M], [K], and [C] are the mass, stiffness, and hysteretic damping matrices, respec-
tively, and

{u} = (V, U, W, φ) (12)

is the displacement vector at location z grouping the translational displacements in the x, y,
and z directions, respectively, as well as the (elastic) rotational of the cross section around
the z axis.

The forcing vector is given by

{ f } =
(

fflap, fedge, fspan, Mtorsion

)
(13)

where { f } represents the local loads acting on the blade segment due to the aerodynamic
forces calculated by the BEM model, while {ü}, {u̇}, and {u} are the displacements,
velocities, and accelerations of the blade section located at z, respectively. The angle of
attack of the section is calculated as:

α(z) = φ(z)− β− ϕ(z) (14)
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where φ(z) is the flow angle determined by the blade element momentum (BEM) theory,
β is the (global) pitch angle, and ϕ(z) is the rotation angle of the local blade section as
determined by the geometry specified in the TWB model.

From Equation (10), it is possible to estimate the instantaneous normalized stress
along the blade of the wind turbine. Figure 3 shows illustrative results of simulations
conducted with the integrated BEM/TWB model summarized above. In the first case
(Figure 3a), the wind turbine was operated with a fixed blade at a wind speed of 9.4925 m/s
to illustrate the stress distribution at a blade of a stall-regulated wind turbine (see [18] for
typical operational characteristics). High-stress levels (relative to the specified material
strength values) can occur near the root section but are not limited to it, as demonstrated
by the continuous band of high relative stress extending to the midsection of the blade. As
illustrated in Figure 3b, where the stress map for a pitch-regulated wind turbine operating
at the same wind speed of 9.4925 m/s is shown, the blade-pitch regulation allows a notable
reduction in stress.

(a)

(b)

Figure 3. Airfoil with different stress levels calculated with the BEM/TWB model. The simulation
result was obtained in MATLAB with a computational time of 5.77 s. (a) Relative stress map for the
wind turbine operating with a stall regulation at a wind speed of 9.4925 m/s. (b) Relative stress map
for the wind turbine operating with a pitch regulation at a wind speed of 9.4925 m/s.

3. Self-Optimizing Controller

Self-optimizing control automatically adjusts the controller parameters to optimize
system performance without external intervention. This control algorithm continuously
analyzes the system it controls through feedback and adjusts its settings to improve its
performance. Furthermore, it applies optimization algorithms to adjust the control pa-
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rameters in real time to achieve optimal performance even in dynamic or unpredictable
environments.

Since this work compares SOC with an NMPC, some distinctions are made. Self-
optimizing and predictive control are two different approaches to controlling complex
systems. While both methods involve optimizing control parameters, there are some critical
differences between them, as follows:

• Feedback vs. feed-forward: Self-optimizing control is a feedback-based approach
where the control system continuously monitors the process output and adjusts the
control input based on the feedback. On the other hand, predictive control is a feed-
forward-based approach that predicts future outputs based on the system’s current
state and adjusts the control input accordingly.

• Model-based vs. model-free: Predictive control requires a mathematical model of the
system being controlled to predict the future behavior of the system. Self-optimizing
control does not require a model of the system and relies on data-driven optimization
techniques to adjust the control parameters.

• Reactive vs. proactive: Self-optimizing control is a reactive approach that responds to
changes in the system in real time. Moreover, predictive control is a proactive approach
that anticipates changes in the system and adjusts the control input accordingly.

• Adaptability: Self-optimizing control is designed to adapt to changes in the system
over time and can continuously optimize the control parameters. On the other hand,
predictive control requires a new model to be developed if there are significant changes
in the system.

Figure 4 shows the block diagram of the proposed adaptation of the SOC control
scheme for controlling a wind turbine. The control architecture operates on the wind
turbine as a supervisor of the phasor-type model shown in Figure 1. The objective is
to find the optimal value of the controlled variable, ωre f , whose value is the set point
for the pitch angle controller (β∗). Figure 5 shows the traditional pitch control scheme
(included in the BCS architecture), which includes the ωre f variable calculated from the
SOC to further adjust ωr accordingly. The reference is the normalized speed in pu (per unit)
of the generator. This controller is activated with wind speeds greater than the nominal
(vw > vnom). For speeds below nominal, β∗ = 0.

offline calculation

Real time implementation

ωre fManipulated variable
c = Hy

ωr

β∗

PI control
Measurements

y = [β, ω, Isq , Igq , Pg ]

Wind
speed Cost function

J = α(Pnom − Pcal(λ, β))2 + (1− α)ζ2

BEM/TWM
Model

WT model
Cp(λ, β)

Cpnom ζi,j

H

Combination matrix
H(Juu , Jud , Gy , Gdy)

Figure 4. Architecture of the control scheme SOC.
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−

+

−

+ β

βmin

βmax

Rate
limiter

β∗

β∗min

β∗min
ωre f

ωr 1
s

1
TPI

Figure 5. Pitch controller.

3.1. Cost Function

The objective was to maximize power extraction while minimizing stress on the turbine
blades. The cost function considered the power and stress factor through a combination of
these variables as follows:

J(u, d) = α(Pnom(vw)− Pcal(λ, β))2 + (1− α)ξ2 (15)

where Pnom is the nominal power, Pcal is the calculated power, ξ is the maximum stress
of (10) calculated along the blade, and α is an optimization parameter whose value is
calculated in accordance with a Pareto front analysis.

The cost function combined the power output and stress variables to create a trade-off
between the two. The cost function was designed to maximize power extraction while
minimizing stress on the turbine blades. This cost function was used to evaluate the
performance of the control strategies and determine which one was the most suitable for a
given wind energy conversion system (WECS).

Different techniques have been developed to solve multiobjective optimization prob-
lems. One of the most widely used techniques for determining the Pareto front is by
considering individual objectives separately. The weighted sum approach involves select-
ing weights wj and calculating a linear combination of the different goals:

Z =
N

∑
j=1

wj Jj(~x) (16)

J1 = α(Pnom − Pcal)
2

J2 = (1− α)ζ2

Because the weighted sum approach uses a convex combination of objectives, multiple
optimization realizations are required to approximate the Pareto optimal set [30]. Figure 6
shows the feasible solutions achieved by evaluating the self-optimized control scheme’s cost
function, Equation (15), with different weighting values α. In this context, the Pareto front is
represented as the maximum value of the stress factor and the power of the baseline control
(BCS). As the weight value (α) decreases, the feasible solutions tend to the maximum stress
and power of the baseline control. The closest to the Pareto optimal solution is achieved
with α = 0.5.

3.2. Combination Matrix

The variables and equations of interest involved in the SOC control structure, accord-
ing to [31–34], are:

• u : (manipulated variables) “base set” for unconstrained degrees of freedom.
• d : disturbance or set of disturbances.
• uopt(d) : optimal value of u for a given disturbance d.
• J(u, d) : objective cost function.
• cs : set-points.
• ny : implementation error or measurement error.
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• y0 : true measurements (without ny).
• y : measurements at the process output (with ny).
• H : optimal projection matrix of selection or combination of measurements.
• c : selected controlled variables.
• copt(d) : optimal value of c for a given disturbance d.

0.2 0.4 0.6 0.8 1 1.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BSC

Pareto front BSC

Feasible Points

Figure 6. Pareto front with feasible solutions.

The architecture of the SOC control requires determining a combination matrix of the system
measurements, H, to determine the control variables c from the process measurements [32]:

c = Hy (17)

To determine H, it is first necessary to find the Hessian matrix HJ(u, d), given by
Equation (18):

HJ(u, d) =
[

Juu Jud
Jdu Jdd

]
(18)

where:

• Juu ∈ Rnu×nu = ∂2 J(u,d)
∂u2 ;

• Jud ∈ Rnu×nd = ∂2 J(u,d)
∂d∂u ;

• Jdu ∈ Rnd×nu = ∂2 J(u,d)
∂u∂d ;

• Jdd ∈ Rnd×nd = ∂2 J(u,d)
∂d2 .

The optimal sensitivity matrix F can then be determined, which is calculated using the
matrix of the gains of each input (measurement) Gy, and the matrix of the gains of each
measurement before each disturbance Gd

y, through Equation (19):

F ∈ Rny×nd = Gd
y −GyJ−1

uu Jud (19)

Using the diagonal matrix of perturbations Wd, and the diagonal matrix of measure-
ment errors (noise) Wn, one can find F̃,

F̃ ∈ Rny×(nd+ny) ∼= [FWd We] (20)

The combination matrix, H, can be found as follows [32]:

H ∈ Rnu×ny =
(

F̃F̃T
)−1

Gy
(

GyT
(

F̃F̃T
)−1

Gy
)−1

J1/2
uu (21)
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For the wind turbine control system, the manipulated variable (u), measurements (y),
and disturbance (d) are defined as:

u = [ωr]
T , y = [ωr, β, Isq, Igq, Pg, ξ]T , d = [vw]

T (22)

where ωr is the angular velocity of the generator, β is the pitch angle, Isq is the quadrature
current of the generator, Igq is the current in the grid quadrature, Pg is the active power in
the grid, and ξ is the normalized stress calculated by the BEM/TWB model. As shown in
Equation (15), the disturbances are directly related to the cost function, so the optimization
was performed for each value of the wind series used in this study.

The values of the diagonal matrices, Wd and We of (20), were chosen after performing
several experiments in which it was verified that they held the individual objectives of
the cost function (15). The wind series used (vs_pu) contained pu values in the range of
0.4503 ≤ vw_pu ≤ 1.3517, the best results were achieved when considering

Wd = 1.2, (23)

and the instrumentation error for ωr was 4.5%; β, Isq, Igq, and Pg were 1% and ξ was 3.5%.

We = diag(0.045, 0.01, 0.01, 0.01, 0.01, 0.035) (24)

3.2.1. Gain Matrix

The gain matrix, Gy, was obtained by evaluating the indirect manipulated variable
(ωr) around the nominally optimal operating point. Gain values were obtained for each
measurement by using finite differences. The calculation of finite differences was carried
out on interpolation polynomials that could represent experimental data. This presents
an advantage when the real functionality of the data to be represented through concrete
functions has yet to be discovered exactly [35]. The derivative of five points was used,
which was obtained by interpolating the points x0, x0± h, and x0± 2h, where the separation
h was constant. Equation (25) shows the expression for approximating the derivative at a
point where ε ∈ (x0 − 2h, x0 + 2h).

f
′
(x0) =

f (x0 − 2h)− 8 f (x0 − h) + 8 f (x0 + h)− f (x0 + 2h)
12h

+
h4

30
f 5(ε) (25)

The results obtained in [15] were used in this study to calculate the gain matrix by
evaluating the manipulated variable near the nominal value that corresponds to the region
where the generator is kept at constant speed. The value of ω∗ = 0.98 with h = 0.02 was
experimentally defined. It is important to mention that this process must be carried out for
each of the measurements of y. Figure 8 shows the graph of the behavior of the pitch angle
versus the rotational speed (ωr).

After calculating the gain values for the measurements, the following results were
obtained:

Gd
y =

∂y
∂d

Gd
y = [0.097, 34.701, 0.151, 0.45, 1.5, 0.868]T (26)

After calculating the finite derivatives, the value of the gain corresponding to each
individual measurement can be determined by:

Gy =
∂y
∂u

Gy = [1, 27.556, 0.219, 0.033,−0.876, 0.753]T (27)
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The matrix of gains against disturbances was calculated with the same logic. Figure 7
shows the behavior of the step angle against the disturbance (vw_pu) together with the
evaluation points. The nominal value of the normalized disturbance was defined as d∗ = 1,
which corresponded to the wind speed where the maximum power was achieved (10 m/s).

Figure 7. Evaluation points to obtain the profit Gd
β.

Figure 8. Evaluation points to obtain the profit Gy
β.

3.2.2. Hessian Matrix Calculation

The Hessian matrix was obtained around the nominally optimal point:

HJ(u, d) =

[
∂2 J

∂u∂u
∂2 J

∂u∂d
∂2 J

∂d∂u
∂2 J

∂d∂d

]
(28)

By using the symbolic tools of Matlab, the Hessian matrix was calculated as: (hessian(J,
[w, v])), where J is the cost function, Equation (15), as a function of the symbolic variables,
w and v, which represent the controlled variable (u = ωr) and the disturbance (d = ws),
respectively.
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3.3. SOC Algorithm

This subsection presents the self-optimized control algorithm implemented on the
simulated model of the wind turbine. It was necessary to initialize the value of the opti-
mization parameter, α, and the diagonal matrices of the expected value of the perturbation
and implementation error, Wd and We, respectively. Then, the variables corresponding
to the vectors of the manipulated variable (u), measurements (y), and disturbances (d)
were obtained. Then, the cost function (J) was defined and the Hessians (Juu and Jud) were
calculated. With this, it was possible to calculate the combination matrix, H, and then
proceed to calculate the controlled variable defined as the angular velocity of the generator
(ωre f ) that enters the pitch angle control system. Steps 4 and 5 repeat indefinitely, while the
rest of the algorithm is executed once to calculate H. Please see details in Algorithm 1.

Algorithm 1 SOC algorithm.

α← 5
Wd, We
1. Obtains the vector input, measurements and disturbance:
u← [ω]
y←

[
β, ω, Isq, Igq, Pg, ξ

]
d← [vw]
2. Define cost function:
J(u, d)← α(Pnom − Pcal(λ, β))2 + (1− α)ξ2

Juu ← ∂2 J
∂u2 , Jud ← ∂2 J

∂u∂d
3. Combination Matrix:
F̃← [FWd We], F← Gd

y −GyJ−1
uu Jud

H←
(
F̃F̃T)−1Gy

(
GyT(

F̃F̃T)−1Gy
)−1

J1/2
uu

4. Controller variable:
∆c← Hy
5. Define:
ωre f ← ∆c

4. Results and Discussion

The results were obtained using the SOC control scheme on a phasor-type wind
turbine model based on a permanent-magnet synchronous generator. The simulation was
implemented in Matlab/Simulink using the parameters listed in Table A1 of Appendix A.
The performance obtained by applying the SOC scheme for different operating conditions
was compared with two other control schemes, NMPC and BCS.

Comparison of Results between Referential Control Schemes

A brief explanation of the objectives of the control schemes used for the comparison is
presented below:

• The baseline control scheme (BCS) offers power control in the third zone (region III) of
the operation of the wind turbine and torque control for the maximum power point
tracking in the second zone (region II) of operation.

• Nonlinear model predictive control (NMPC) seeks optimal operational points in the
controlled variables ωref and βref. The former variable is calculated exclusively for
wind speeds below the nominal value (region II).

• Self optimizing control (SOC) performs power and torque control in the WT’s third
operating zone. ωref is calculated to maximize the inverse relationship between
the extracted power and the stress factor. SOC constitutes a gentle update on the
architecture of the BCS.

The wind speed time series used in the simulation is shown in Figure 9. The red line
indicates the nominal value of the wind speed (10 m/s). This time series was generated
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with Turbsim, and the wind series had a mean speed value of 9.32 m/s. When the wind
speed exceeded the nominal value, the angular speed of the rotor was regulated by the
manipulated variable β∗. It can be seen that β∗ is zero in the region where the wind speed
is below the nominal value, while β∗ changes its value when the wind speed exceeds the
rated value.

100 200 300 400 500 600
0

5

10

15

Wind speed

Nominal value

100 200 300 400 500 600
0

10

20
SOC

NMPC

BCS

Figure 9. β∗ behavior for the SOC, NMPC, and BCS control schemes.

Figure 10 shows a graphical comparison of the time series of the output power and
the stress of the WECS when operating with the three control schemes. The maximum
power, as expected, was obtained with the BCS, and the maximum stress levels during
the simulation also occurred with this baseline control scheme. The NMPC and the SOC
exhibited a power curtailment during the test, which was a trade-off for reducing the
stress over the blades. Stress reduction can be seen to be quite significant (Figure 10). The
results of this experiment show that the BCS provides the highest power output, but it
also increases stress on the blades. On the other hand, NMPC and SOC can reduce this
stress significantly while still providing a reasonable amount of power. This is especially
beneficial for the long-term operation of WECSs, since it helps protect them from wear and
tear. Moreover, since these two control schemes can provide a stable output with fewer
variations, they can be used effectively to increase the lifetime of WECSs.

The results in Figure 11 further reinforce the conclusion that the SOC scheme is the
best choice for this system. Not only does it have a higher average power output than
the reference controllers, but its variance is also significantly lower. This suggests that it
produces more consistent results over multiple trials, making it an attractive option for
applications where reliability is of paramount importance. More importantly, its stress
factor results are much lower than either of the reference controllers, making it a safe and
reliable choice for this system.
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Figure 10. Time-series comparison of the normalized power and the stress for the three control
schemes.

Figure 11. Comparison between power output and stress factor.

Figure 12 shows a graphical comparison of the normalized power output of the WECS
at specific stress levels when operating with the three different control schemes (SOC,
NMPC, and BCS). Unsurprisingly, the BCS reaches the maximum power extraction since
its control objective only considers power maximization. However, the stress level is
much greater than the ones achieved by either NMPC or SOC, as demonstrated by the
displacement of the heavy blue line (average power–stress relation for BCS) to the right of
the black (SOC) and the red (NMPC) lines. The SOC performance is consistently better than
that of NMPC, i.e., the average SOC operating values in the power–stress plane always
dominate the average NMPC solutions (in a Pareto sense), although not by a large margin.
The advantage over the BCS method is much more evident since the average SOC solutions
dominate the BCS solutions by large margins, except for high power values where, by
definition, BCS tends to dominate on the power axis. However, the BCS does not provide
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any stress relief to the turbine blades. As a result, the wind turbine’s power output can
suffer in long-term scenarios due to fatigue and other issues. It is therefore essential to
consider the effects of stress when selecting a control strategy for a wind energy conversion
system. The results presented in Figure 12 indicate that while BCS may provide a higher
power output in short-term scenarios, it may not be optimal for long-term operation. SOC
and NMPC are more suitable for prolonged operation as they offer stress relief at a small
energy penalty.

In addition, the SOC control scheme is computationally inexpensive compared to the
BCS and NMPC schemes. In terms of computational cost, the SOC algorithm requires
significantly fewer time steps and is more computationally efficient than the NMPC. This
makes it an ideal choice for real-time optimization of a WECS since it can achieve a good
balance between power output and blades stress while keeping computational costs low.
Furthermore, the SOC algorithm can be easily implemented in existing WECS control
systems with minimal modifications. This makes it a viable option for wind turbine
owners who are looking to optimize their WECS in real time without incurring significant
additional costs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12. Comparison of the power extracted from the wind turbine at a specific stress level with
the three control schemes.

The power curtailment of the SOC and NMPC controllers over the BCS was calcu-
lated as:

%Pcurtailment =
∑ Pi

∑ PBCS
, i ∈ {SOC, NMPC} (29)

The SOC and NMPC control schemes reduced the power output compared to the
BCS ( power curtailment) control by 11.3% and 13.5%, respectively. This power reduction
corresponded to the variation in rotational speed (Figure 10), ωr. Similarly, the percentage of
stress reduction using the SOC and NMPC control schemes versus the BSC can be calculated
as:

%ξ =
∑ ξi

∑ ξBCS
, i ∈ {SOC, NMPC} (30)

The SOC and the NMPC reduced the stress factor, ξ, by 18.1% and 21.1%, respectively.
Table 2 shows the results for the control schemes (NMPC and SOC) in comparison with
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the BSC scheme for different wind speeds and turbulence intensities. Regarding the SOC
control scheme, a reduction of the stress factor of about 18% was achieved. This result
corresponded to the power reduction above 11%.

The normalized PSD calculated for each of the control schemes, SOC, NMPC, and
BCS, is shown in Figure 13. Figure 13a,b show the results for the power fluctuations and
the stress factor, respectively, demonstrating that the implementation of the SOC achieved
a decrease in both power fluctuations and stress spectral components.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1
SOC

NMPC

BCS

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1
SOC

NMPC

BCS

(b)

Figure 13. Comparison of the response in frequency of the behavior of the controllers using the PSD.
(a) PSD of the output power. (b) PSD of the stress factor, ξ.
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Table 2. Summary of operating results for the different control schemes.

Wind
Velocity

Turbulence
IEC Kaimal

% of ξ Reduction % Power Curtailment

NMPC SOC NMPC SOC

8.59 m/s 27.56% 17.584% 13.913% 11.78% 9.21%
9.21 m/s 15.00% 16.0% 12.456% 12.31% 10.27%

10.434 m/s 21.51% 33.67% 28.798% 18.248% 14.76%

Table 3 shows the computation time for each control scheme. It can be noticed that the
processing time of the SOC control scheme was significantly shorter than for NMPC under
identical simulation conditions; in this case, this implied a wind speed time series with a
duration of 605 s. The simulations were carried out on a personal computer with an Intel
Core i7-7700HQ CPU @2.80 GHz and 16 GB of RAM.

Table 3. Computation time of each control scheme.

Simulation Duration BCS SOC NMPC

605 s 1.23 h 1.32 h 3.52 h

5. Conclusions

In the present work, a novel control scheme was introduced, allowing for the efficient
co-optimization of output power and blade stresses. The work built on a recently proposed
self-optimization control (SOC) for wind turbines and prior work of two of the authors
on the efficient modeling of blade stress. The proposed novel control scheme allows
for a notable reduction in blade stress at a modest energy penalty, i.e., a curtailment of
output power. Apart from this favorable trade-off, the SOC also significantly reduced
the fluctuations of both the power output and average blade stress. Both reductions are
additional achievements which translate into important benefits: reductions in power
output fluctuation diminish intermittency and make the turbine more grid-friendly; a lower
stress fluctuation level, on the other hand, translates into fewer fatigue cycles (which also
have smaller amplitudes) and therefore a longer fatigue life of the turbine blades.

The proposed SOC strategy significantly outperformed a reference strategy, termed
BCS, modeled after the standard operation of commercial wind turbines, as well as a
nonlinear model predicted control (NMPC) scheme. While the BCS strategy did not
explicitly consider stress as part of the control objectives, the NMPC scheme did work
on the same combined objective function as the SOC approach; therefore, the superior
performance of the novel (SOC) was not anticipated from the outset. The work did confirm
the initial expectation that the SOC would be more computationally efficient than the
NMPC method. This finding paves the way for a real-time implementation of the proposed
method in commercial wind turbines.
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Appendix A

Simulation Parameters

The WECS, WT, and PMSG parameters used in the simulation are shown in Table A1.
Some variables are normalized to pu (per unit) values.

Table A1. Simulation parameters.

Parameter Value

Rated power 1.5 MW
Rated voltage (Vnom) 1.8 kV

Rated frequency 60 Hz
Stator resistance (Rs) 0.022 pu

Stator direct axis inductance (Lsd) 1.2 pu
Stator quadrature axis inductance (Lsq) 0.71 pu

Permanent magnet flux (ψm) 1.3 pu
Turbine constant of inertia (Ht) 3.5 s
Generator inertia constant (Hg) 0.9 s

Turbine damping (D) 1.5
Spring constant (K) 296

Inverter-side inductance (Li) 82.4 µH
Parasitic resistance of Li (Ri) 3.6×10−3 Ω

Grid-side inductance (Lg) 16.5 µH
Parasitic resistance of Lg (Rg) 1×10−3 Ω

Filter capacitor (C f ) 122 µH
Damping resistance (Rd) 0.05 Ω

Air density (ρ) 1.1839 kg/m3

Rotor blade radius (R) 3.4 m
Optimal TSR (λ∗) 8.1

Optimal power coefficient (Cp
∗) 0.48
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